lean2/library/data/real/order.lean

1128 lines
33 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
To do:
o Break positive naturals into their own file and fill in sorry's
o Fill in sorrys for helper lemmas that will not be handled by simplifier
o Rename things and possibly make theorems private
-/
import data.real.basic data.rat data.nat
open -[coercions] rat
open -[coercions] nat
open eq eq.ops
----------------------------------------------------------------------------------------------------
-- pnat theorems
theorem inv_add_lt_left (p q : +) : (p + q)⁻¹ < p⁻¹ := sorry
theorem pnat_lt_add_left (p q : +) : p < p + q := sorry
notation 2 := pnat.pos (of_num 2) dec_trivial
-- rat theorems
theorem ge_sub_of_abs_sub_le_left {a b c : } (H : abs (a - b) ≤ c) : a ≥ b - c := sorry
theorem ge_sub_of_abs_sub_le_right {a b c : } (H : abs (a - b) ≤ c) : b ≥ a - c :=
ge_sub_of_abs_sub_le_left (!abs_sub ▸ H)
theorem sep_by_inv {a b : } (H : a > b) : ∃ N : +, a > (b + N⁻¹ + N⁻¹) := sorry
theorem helper_1 {a : } (H : a > 0) : -a + -a ≤ -a := sorry
theorem rewrite_helper8 (a b c : ) : a - b = c - b + (a - c) := sorry -- simp
---------
namespace s
definition pos (s : seq) := ∃ n : +, n⁻¹ < (s n)
definition nonneg (s : seq) := ∀ n : +, -(n⁻¹) ≤ s n
theorem bdd_away_of_pos {s : seq} (Hs : regular s) (H : pos s) :
∃ N : +, ∀ n : +, n ≥ N → (s n) ≥ N⁻¹ :=
begin
apply exists.elim H,
intro n Hn,
let Em := sep_by_inv Hn,
apply exists.elim Em,
intro N HN,
existsi N,
intro m Hm,
have Habs : abs (s m - s n) ≥ s n - s m, by rewrite abs_sub; apply le_abs_self,
have Habs' : s m + abs (s m - s n) ≥ s n, from (iff.mp' (le_add_iff_sub_left_le _ _ _)) Habs,
have HN' : N⁻¹ + N⁻¹ ≤ s n - n⁻¹, begin
apply iff.mp' (le_add_iff_sub_right_le _ _ _),
rewrite [sub_neg_eq_add, add.comm, -add.assoc],
apply le_of_lt HN
end,
rewrite rat.add.comm at Habs',
have Hin : s m ≥ N⁻¹, from calc
s m ≥ s n - abs (s m - s n) : (iff.mp (le_add_iff_sub_left_le _ _ _)) Habs'
... ≥ s n - (m⁻¹ + n⁻¹) : rat.sub_le_sub_left !Hs
... = s n - m⁻¹ - n⁻¹ : by rewrite sub_add_eq_sub_sub
... = s n - n⁻¹ - m⁻¹ : by rewrite [add.assoc, (add.comm (-m⁻¹)), -add.assoc]
... ≥ s n - n⁻¹ - N⁻¹ : rat.sub_le_sub_left (inv_ge_of_le Hm)
... ≥ N⁻¹ + N⁻¹ - N⁻¹ : rat.sub_le_sub_right HN'
... = N⁻¹ : by rewrite rat.add_sub_cancel,
apply Hin
end
theorem pos_of_bdd_away {s : seq} (H : ∃ N : +, ∀ n : +, n ≥ N → (s n) ≥ N⁻¹) : pos s :=
begin
rewrite ↑pos,
apply exists.elim H,
intro N HN,
existsi (N + pone),
apply lt_of_lt_of_le,
apply inv_add_lt_left,
apply HN,
apply pnat.le_of_lt,
apply pnat_lt_add_left
end
theorem bdd_within_of_nonneg {s : seq} (Hs : regular s) (H : nonneg s) :
∀ n : +, ∃ N : +, ∀ m : +, m ≥ N → s m ≥ -n⁻¹ :=
begin
intros,
existsi n,
intro m Hm,
rewrite ↑nonneg at H,
apply le.trans,
apply neg_le_neg,
apply inv_ge_of_le,
apply Hm,
apply H
end
theorem nonneg_of_bdd_within {s : seq} (Hs : regular s)
(H : ∀n : +, ∃ N : +, ∀ m : +, m ≥ N → s m ≥ -n⁻¹) : nonneg s :=
begin
rewrite ↑nonneg,
intro k,
apply squeeze_2,
intro ε Hε,
apply exists.elim (H (pceil ((1 + 1) / ε))),
intro N HN,
let HN' := HN (max (pceil ((1+1)/ε)) N),
let HN'' := HN' (!max_right),
apply le.trans,
rotate 1,
apply ge_sub_of_abs_sub_le_left,
apply Hs,
apply (max (pceil ((1+1)/ε)) N),
rewrite [↑rat.sub, neg_add, {_ + (-k⁻¹ + _)}add.comm, *add.assoc],
apply rat.add_le_add_left,
apply le.trans,
rotate 1,
apply rat.add_le_add,
rotate 1,
apply HN'',
rotate_right 1,
apply neg_le_neg,
apply inv_ge_of_le,
apply max_left,
rewrite -neg_add,
apply neg_le_neg,
apply le.trans,
apply rat.add_le_add,
repeat (apply inv_pceil_div;
apply rat.add_pos;
repeat apply zero_lt_one;
apply Hε),
have Hone : 1 = of_num 1, from rfl,
rewrite [Hone, add_halves],
apply le.refl
end
theorem pos_of_pos_equiv {s t : seq} (Hs : regular s) (Heq : s ≡ t) (Hp : pos s) : pos t :=
begin
rewrite [↑pos at *],
apply exists.elim (bdd_away_of_pos Hs Hp),
intro N HN,
existsi 2 * 2 * N,
apply lt_of_lt_of_le,
rotate 1,
apply ge_sub_of_abs_sub_le_right,
apply Heq,
have Hs4 : N⁻¹ ≤ s (2 * 2 * N), from HN _ (!pnat.mul_le_mul_left),
apply lt_of_lt_of_le,
rotate 1,
apply iff.mp' (rat.add_le_add_right_iff _ _ _),
apply Hs4,
rewrite [*pnat_mul_assoc, padd_halves, -(padd_halves N), rat.add_sub_cancel],
apply half_shrink_strong
end
theorem nonneg_of_nonneg_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) (Hp : nonneg s) :
nonneg t :=
begin
apply nonneg_of_bdd_within,
apply Ht,
intros,
let Bd := (bdd_within_of_nonneg Hs Hp) (2 * 2 * n),
apply exists.elim Bd,
intro Ns HNs,
existsi max Ns (2 * 2 * n),
intro m Hm,
apply le.trans,
rotate 1,
apply ge_sub_of_abs_sub_le_right,
apply Heq,
apply le.trans,
rotate 1,
apply rat.sub_le_sub_right,
apply HNs,
apply ple.trans,
rotate 1,
apply Hm,
rotate_right 1,
apply max_left,
have Hms : m⁻¹ ≤ (2 * 2 * n)⁻¹, begin
apply inv_ge_of_le,
apply ple.trans,
rotate 1,
apply Hm;
apply max_right
end,
have Hms' : m⁻¹ + m⁻¹ ≤ (2 * 2 * n)⁻¹ + (2 * 2 * n)⁻¹, from add_le_add Hms Hms,
apply le.trans,
rotate 1,
apply rat.sub_le_sub_left,
apply Hms',
rewrite [*pnat_mul_assoc, padd_halves, -neg_add, -padd_halves n],
apply neg_le_neg,
apply rat.add_le_add_right,
apply half_shrink
end
definition s_le (a b : seq) := nonneg (sadd b (sneg a))
definition s_lt (a b : seq) := pos (sadd b (sneg a))
theorem zero_nonneg : nonneg zero :=
begin
rewrite ↑[nonneg, zero],
intros,
apply neg_nonpos_of_nonneg,
apply le_of_lt,
apply inv_pos
end
theorem s_zero_lt_one : s_lt zero one :=
begin
rewrite [↑s_lt, ↑zero, ↑sadd, ↑sneg, ↑one, neg_zero, add_zero, ↑pos],
existsi 2,
apply inv_lt_one_of_gt,
apply one_lt_two
end
theorem le.refl {s : seq} (Hs : regular s) : s_le s s :=
begin
apply nonneg_of_nonneg_equiv,
rotate 2,
apply equiv.symm,
apply neg_s_cancel s Hs,
apply zero_nonneg,
apply zero_is_reg,
apply reg_add_reg Hs (reg_neg_reg Hs)
end
theorem s_nonneg_of_pos {s : seq} (Hs : regular s) (H : pos s) : nonneg s :=
begin
apply nonneg_of_bdd_within,
apply Hs,
intros,
let Bt := bdd_away_of_pos Hs H,
apply exists.elim Bt,
intro N HN,
existsi N,
intro m Hm,
apply le.trans,
rotate 1,
apply HN,
apply Hm,
apply le.trans,
rotate 1,
apply le_of_lt,
apply inv_pos,
rewrite -neg_zero,
apply neg_le_neg,
apply le_of_lt,
apply inv_pos
end
theorem s_le_of_s_lt {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_lt s t) : s_le s t :=
begin
rewrite [↑s_le, ↑s_lt at *],
apply s_nonneg_of_pos,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end
theorem s_neg_add_eq_s_add_neg (s t : seq) : sneg (sadd s t) ≡ sadd (sneg s) (sneg t) :=
begin
rewrite [↑equiv, ↑sadd, ↑sneg],
intros,
rewrite [rat.neg_add, sub_self, abs_zero],
apply add_invs_nonneg
end
theorem equiv_cancel_middle {s t u : seq} (Hs : regular s) (Ht : regular t)
(Hu : regular u) : sadd (sadd u t) (sneg (sadd u s)) ≡ sadd t (sneg s) :=
begin
let Hz := zero_is_reg,
apply equiv.trans,
rotate 3,
apply add_well_defined,
rotate 4,
apply s_add_comm,
apply s_neg_add_eq_s_add_neg,
apply equiv.trans,
rotate 3,
apply s_add_assoc,
rotate 2,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply equiv.trans,
rotate 4,
apply equiv.refl,
rotate_right 1,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_add_assoc,
rotate 2,
apply equiv.trans,
rotate 4,
apply s_zero_add,
rotate_right 1,
apply add_well_defined,
rotate 4,
apply neg_s_cancel,
rotate 1,
apply equiv.refl,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end
theorem add_le_add_of_le_right {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_le s t) :
∀ u : seq, regular u → s_le (sadd u s) (sadd u t) :=
begin
intro u Hu,
rewrite [↑s_le at *],
apply nonneg_of_nonneg_equiv,
rotate 2,
apply equiv.symm,
apply equiv_cancel_middle,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end
theorem s_add_lt_add_left {s t : seq} (Hs : regular s) (Ht : regular t) (Hst : s_lt s t) {u : seq}
(Hu : regular u) : s_lt (sadd u s) (sadd u t) :=
begin
rewrite ↑s_lt at *,
apply pos_of_pos_equiv,
rotate 1,
apply equiv.symm,
apply equiv_cancel_middle,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end
theorem add_nonneg_of_nonneg {s t : seq} (Hs : nonneg s) (Ht : nonneg t) : nonneg (sadd s t) :=
begin
rewrite [↑nonneg at *, ↑sadd],
intros,
rewrite [-padd_halves, neg_add],
apply add_le_add,
apply Hs,
apply Ht
end
theorem le.trans {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Lst : s_le s t) (Ltu : s_le t u) : s_le s u :=
begin
rewrite ↑s_le at *,
let Rz := zero_is_reg,
have Hsum : nonneg (sadd (sadd u (sneg t)) (sadd t (sneg s)) ), from add_nonneg_of_nonneg Ltu Lst,
have H' : nonneg (sadd (sadd u (sadd (sneg t) t)) (sneg s)), begin
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply s_add_assoc,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption),
apply equiv.refl,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply equiv.symm,
apply s_add_assoc,
rotate 2,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end,
have H'' : sadd (sadd u (sadd (sneg t) t)) (sneg s) ≡ sadd u (sneg s), begin
apply add_well_defined,
rotate 4,
apply equiv.trans,
rotate 3,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply s_neg_cancel,
rotate 1,
apply s_add_zero,
rotate 1,
apply equiv.refl,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply H'',
apply H',
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end
theorem equiv_of_le_of_ge {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_le s t) (Lts : s_le t s) : s ≡ t :=
begin
apply equiv_of_diff_equiv_zero,
rotate 2,
rewrite [↑s_le at *, ↑nonneg at *, ↑equiv, ↑sadd at *, ↑sneg at *],
intros,
rewrite [↑zero, sub_zero],
apply abs_le_of_le_of_neg_le,
apply le_of_neg_le_neg,
rewrite [2 neg_add, neg_neg],
apply rat.le.trans,
apply helper_1,
apply inv_pos,
rewrite add.comm,
apply Lst,
apply le_of_neg_le_neg,
rewrite [neg_add, neg_neg],
apply rat.le.trans,
apply helper_1,
apply inv_pos,
apply Lts,
repeat assumption
end
definition sep (s t : seq) := s_lt s t s_lt t s
local infix `≢` : 50 := sep
theorem le_and_sep_of_lt {s t : seq} (Hs : regular s) (Ht : regular t) (Lst : s_lt s t) : s_le s t ∧ sep s t :=
begin
apply and.intro,
rewrite [↑s_lt at *, ↑pos at *, ↑s_le, ↑nonneg],
intros,
apply exists.elim Lst,
intro N HN,
let Rns := reg_neg_reg Hs,
let Rtns := reg_add_reg Ht Rns,
let Habs := ge_sub_of_abs_sub_le_right (Rtns N n),
rewrite [sub_add_eq_sub_sub at Habs],
exact (calc
sadd t (sneg s) n ≥ sadd t (sneg s) N - N⁻¹ - n⁻¹ : Habs
... ≥ 0 - n⁻¹: begin
apply rat.sub_le_sub_right,
apply le_of_lt,
apply (iff.mp' (sub_pos_iff_lt _ _)),
apply HN
end
... = -n⁻¹ : by rewrite zero_sub),
rewrite ↑sep,
exact or.inl Lst
end
theorem lt_of_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) (H : s_le s t ∧ sep s t) : s_lt s t :=
begin
let Le := and.left H,
let Hsep := and.right H,
rewrite [↑sep at Hsep],
apply or.elim Hsep,
intro P, exact P,
intro Hlt,
rewrite [↑s_le at Le, ↑nonneg at Le, ↑s_lt at Hlt, ↑pos at Hlt],
apply exists.elim Hlt,
intro N HN,
let LeN := Le N,
let HN' := (iff.mp' (neg_lt_neg_iff_lt _ _)) HN,
rewrite [↑sadd at HN', ↑sneg at HN', neg_add at HN', neg_neg at HN', add.comm at HN'],
let HN'' := not_le_of_gt HN',
apply absurd LeN HN''
end
theorem lt_iff_le_and_sep {s t : seq} (Hs : regular s) (Ht : regular t) :
s_lt s t ↔ s_le s t ∧ sep s t :=
iff.intro (le_and_sep_of_lt Hs Ht) (lt_of_le_and_sep Hs Ht)
theorem s_neg_zero : sneg zero ≡ zero :=
begin
rewrite ↑[sneg, zero, equiv],
intros,
rewrite [sub_zero, abs_neg, abs_zero],
apply add_invs_nonneg
end
theorem s_sub_zero {s : seq} (Hs : regular s) : sadd s (sneg zero) ≡ s :=
begin
apply equiv.trans,
rotate 3,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply s_neg_zero,
apply s_add_zero,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
end
theorem s_pos_of_gt_zero {s : seq} (Hs : regular s) (Hgz : s_lt zero s) : pos s :=
begin
rewrite [↑s_lt at *],
apply pos_of_pos_equiv,
rotate 1,
apply s_sub_zero,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg),
apply zero_is_reg
end
theorem s_gt_zero_of_pos {s : seq} (Hs : regular s) (Hp : pos s) : s_lt zero s :=
begin
rewrite ↑s_lt,
apply pos_of_pos_equiv,
rotate 1,
apply equiv.symm,
apply s_sub_zero,
repeat assumption
end
theorem s_nonneg_of_ge_zero {s : seq} (Hs : regular s) (Hgz : s_le zero s) : nonneg s :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply s_sub_zero,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
end
theorem s_ge_zero_of_nonneg {s : seq} (Hs : regular s) (Hn : nonneg s) : s_le zero s :=
begin
rewrite ↑s_le,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply equiv.symm,
apply s_sub_zero,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
end
theorem s_mul_pos_of_pos {s t : seq} (Hs : regular s) (Ht : regular t) (Hps : pos s)
(Hpt : pos t) : pos (smul s t) :=
begin
rewrite [↑pos at *],
apply exists.elim (bdd_away_of_pos Hs Hps),
intros Ns HNs,
apply exists.elim (bdd_away_of_pos Ht Hpt),
intros Nt HNt,
existsi 2 * max Ns Nt * max Ns Nt,
rewrite ↑smul,
apply lt_of_lt_of_le,
rotate 1,
apply rat.mul_le_mul,
apply HNs,
apply ple.trans,
apply max_left Ns Nt,
rewrite -pnat_mul_assoc,
apply pnat.mul_le_mul_left,
apply HNt,
apply ple.trans,
apply max_right Ns Nt,
rewrite -pnat_mul_assoc,
apply pnat.mul_le_mul_left,
apply le_of_lt,
apply inv_pos,
apply rat.le.trans,
rotate 1,
apply HNs,
apply ple.trans,
apply max_left Ns Nt,
rewrite -pnat_mul_assoc,
apply pnat.mul_le_mul_left,
rewrite pnat_div_helper,
apply rat.mul_lt_mul,
rewrite [pnat_div_helper, -one_mul Ns⁻¹],
apply rat.mul_lt_mul,
apply inv_lt_one_of_gt,
apply dec_trivial,
apply inv_ge_of_le,
apply max_left,
apply inv_pos,
apply le_of_lt zero_lt_one,
apply inv_ge_of_le,
apply max_right,
apply inv_pos,
repeat (apply le_of_lt; apply inv_pos)
end
theorem s_mul_gt_zero_of_gt_zero {s t : seq} (Hs : regular s) (Ht : regular t)
(Hzs : s_lt zero s) (Hzt : s_lt zero t) : s_lt zero (smul s t) :=
s_gt_zero_of_pos
(reg_mul_reg Hs Ht)
(s_mul_pos_of_pos Hs Ht (s_pos_of_gt_zero Hs Hzs) (s_pos_of_gt_zero Ht Hzt))
theorem le_of_lt_or_equiv {s t : seq} (Hs : regular s) (Ht : regular t)
(Hor : (s_lt s t) (s ≡ t)) : s_le s t :=
or.elim Hor
(begin
intro Hlt,
apply s_le_of_s_lt Hs Ht Hlt
end)
(begin
intro Heq,
rewrite ↑s_le,
apply nonneg_of_nonneg_equiv,
rotate 3,
apply zero_nonneg,
apply zero_is_reg,
apply reg_add_reg Ht (reg_neg_reg Hs),
apply equiv.symm,
apply diff_equiv_zero_of_equiv,
rotate 2,
apply equiv.symm,
apply Heq,
repeat assumption
end)
theorem s_zero_mul {s : seq} : smul s zero ≡ zero :=
begin
rewrite [↑equiv, ↑smul, ↑zero],
intros,
rewrite [mul_zero, sub_zero, abs_zero],
apply add_invs_nonneg
end
theorem s_mul_nonneg_of_pos_of_zero {s t : seq} (Hs : regular s) (Ht : regular t)
(Hps : pos s) (Hpt : zero ≡ t) : nonneg (smul s t) :=
begin
apply nonneg_of_nonneg_equiv,
rotate 2,
apply mul_well_defined,
rotate 4,
apply equiv.refl,
apply Hpt,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply equiv.symm,
apply s_zero_mul,
apply zero_nonneg,
repeat (assumption | apply reg_mul_reg | apply zero_is_reg)
end
theorem s_mul_nonneg_of_nonneg {s t : seq} (Hs : regular s) (Ht : regular t)
(Hps : nonneg s) (Hpt : nonneg t) : nonneg (smul s t) :=
begin
intro n,
rewrite ↑smul,
apply rat.le.by_cases 0 (s (((K₂ s t) * 2) * n)),
intro Hsp,
apply rat.le.by_cases 0 (t (((K₂ s t) * 2) * n)),
intro Htp,
apply rat.le.trans,
rotate 1,
apply rat.mul_nonneg Hsp Htp,
rotate_right 1,
apply le_of_lt,
apply neg_neg_of_pos,
apply inv_pos,
intro Htn,
apply rat.le.trans,
rotate 1,
apply rat.mul_le_mul_of_nonpos_right,
apply rat.le.trans,
apply le_abs_self,
apply canon_2_bound_left s t Hs,
apply Htn,
rotate_right 1,
apply rat.le.trans,
rotate 1,
apply rat.mul_le_mul_of_nonneg_left,
apply Hpt,
apply le_of_lt,
apply rat_of_pnat_is_pos,
rotate 1,
rewrite -neg_mul_eq_mul_neg,
apply neg_le_neg,
rewrite [*pnat_mul_assoc, pnat_div_helper, -mul.assoc, pnat.inv_cancel, one_mul],
apply inv_ge_of_le,
apply pnat.mul_le_mul_left,
intro Hsn,
apply rat.le.by_cases 0 (t (((K₂ s t) * 2) * n)),
intro Htp,
apply rat.le.trans,
rotate 1,
apply rat.mul_le_mul_of_nonpos_left,
apply rat.le.trans,
apply le_abs_self,
apply canon_2_bound_right s t Ht,
apply Hsn,
rotate_right 1,
apply rat.le.trans,
rotate 1,
apply rat.mul_le_mul_of_nonneg_right,
apply Hps,
apply le_of_lt,
apply rat_of_pnat_is_pos,
rotate 1,
rewrite -neg_mul_eq_neg_mul,
apply neg_le_neg,
rewrite [*pnat_mul_assoc, pnat_div_helper, mul.comm, -mul.assoc, pnat.inv_cancel, one_mul],
apply inv_ge_of_le,
apply pnat.mul_le_mul_left,
intro Htn,
apply rat.le.trans,
rotate 1,
apply mul_nonneg_of_nonpos_of_nonpos,
apply Hsn,
apply Htn,
apply le_of_lt,
apply neg_neg_of_pos,
apply inv_pos
end
theorem s_mul_ge_zero_of_ge_zero {s t : seq} (Hs : regular s) (Ht : regular t)
(Hzs : s_le zero s) (Hzt : s_le zero t) : s_le zero (smul s t) :=
begin
let Hzs' := s_nonneg_of_ge_zero Hs Hzs,
let Htz' := s_nonneg_of_ge_zero Ht Hzt,
apply s_ge_zero_of_nonneg,
rotate 1,
apply s_mul_nonneg_of_nonneg,
repeat assumption,
apply reg_mul_reg Hs Ht
end
theorem not_lt_self (s : seq) : ¬ s_lt s s :=
begin
intro Hlt,
rewrite [↑s_lt at Hlt, ↑pos at Hlt],
apply exists.elim Hlt,
intro n Hn,
rewrite [↑sadd at Hn, ↑sneg at Hn, sub_self at Hn],
apply absurd Hn (rat.not_lt_of_ge (rat.le_of_lt !inv_pos))
end
theorem not_sep_self (s : seq) : ¬ s ≢ s :=
begin
intro Hsep,
rewrite ↑sep at Hsep,
let Hsep' := (iff.mp (!or_self)) Hsep,
apply absurd Hsep' (!not_lt_self)
end
theorem le_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s_le s t ↔ s_le u v :=
iff.intro
(begin
intro Hle,
rewrite [↑s_le at *],
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply Htv,
apply neg_well_defined,
apply Hsu,
apply Hle,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end)
(begin
intro Hle,
rewrite [↑s_le at *],
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply equiv.symm, apply Htv,
apply neg_well_defined,
apply equiv.symm, apply Hsu,
apply Hle,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end)
theorem lt_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s_lt s t ↔ s_lt u v :=
iff.intro
(begin
intro Hle,
rewrite [↑s_lt at *],
apply pos_of_pos_equiv,
rotate 1,
apply add_well_defined,
rotate 4,
apply Htv,
apply neg_well_defined,
apply Hsu,
apply Hle,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end)
(begin
intro Hle,
rewrite [↑s_lt at *],
apply pos_of_pos_equiv,
rotate 1,
apply add_well_defined,
rotate 4,
apply equiv.symm, apply Htv,
apply neg_well_defined,
apply equiv.symm, apply Hsu,
apply Hle,
repeat (apply reg_add_reg | apply reg_neg_reg | assumption)
end)
theorem sep_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Hv : regular v) (Hsu : s ≡ u) (Htv : t ≡ v) : s ≢ t ↔ u ≢ v :=
begin
rewrite ↑sep,
apply iff.intro,
intro Hor,
apply or.elim Hor,
intro Hlt,
apply or.inl,
apply iff.mp (lt_well_defined Hs Ht Hu Hv Hsu Htv),
assumption,
intro Hlt,
apply or.inr,
apply iff.mp (lt_well_defined Ht Hs Hv Hu Htv Hsu),
assumption,
intro Hor,
apply or.elim Hor,
intro Hlt,
apply or.inl,
apply iff.mp' (lt_well_defined Hs Ht Hu Hv Hsu Htv),
assumption,
intro Hlt,
apply or.inr,
apply iff.mp' (lt_well_defined Ht Hs Hv Hu Htv Hsu),
assumption
end
theorem s_lt_of_lt_of_le {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Hst : s_lt s t) (Htu : s_le t u) : s_lt s u :=
begin
let Rtns := reg_add_reg Ht (reg_neg_reg Hs),
let Runt := reg_add_reg Hu (reg_neg_reg Ht),
have Hcan : ∀ m, sadd u (sneg s) m = (sadd t (sneg s)) m + (sadd u (sneg t)) m, begin
intro m,
rewrite [↑sadd, ↑sneg, -rewrite_helper8]
end,
rewrite [↑s_lt at *, ↑s_le at *],
apply exists.elim (bdd_away_of_pos Rtns Hst),
intro Nt HNt,
apply exists.elim (bdd_within_of_nonneg Runt Htu (2 * Nt)),
intro Nu HNu,
apply pos_of_bdd_away,
existsi max (2 * Nt) Nu,
intro n Hn,
rewrite Hcan,
apply rat.le.trans,
rotate 1,
apply rat.add_le_add,
apply HNt,
apply ple.trans,
apply pnat.mul_le_mul_left 2,
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply max_left,
apply HNu,
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply max_right,
rewrite [-padd_halves Nt, rat.add_sub_cancel],
apply inv_ge_of_le,
apply max_left
end
theorem s_lt_of_le_of_lt {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Hst : s_le s t) (Htu : s_lt t u) : s_lt s u :=
begin
let Rtns := reg_add_reg Ht (reg_neg_reg Hs),
let Runt := reg_add_reg Hu (reg_neg_reg Ht),
have Hcan : ∀ m, sadd u (sneg s) m = (sadd t (sneg s)) m + (sadd u (sneg t)) m, begin
intro m,
rewrite [↑sadd, ↑sneg, -rewrite_helper8]
end,
rewrite [↑s_lt at *, ↑s_le at *],
apply exists.elim (bdd_away_of_pos Runt Htu),
intro Nu HNu,
apply exists.elim (bdd_within_of_nonneg Rtns Hst (2 * Nu)),
intro Nt HNt,
apply pos_of_bdd_away,
existsi max (2 * Nu) Nt,
intro n Hn,
rewrite Hcan,
apply rat.le.trans,
rotate 1,
apply rat.add_le_add,
apply HNt,
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply max_right,
apply HNu,
apply ple.trans,
apply pnat.mul_le_mul_left 2,
apply ple.trans,
rotate 1,
apply Hn,
rotate_right 1,
apply max_left,
rewrite [-padd_halves Nu, neg_add_cancel_left],
apply inv_ge_of_le,
apply max_left
end
--------
-- These are currently needed for lin_ordered_comm_ring.
/-theorem le_or_ge {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t s_le t s :=
sorry
theorem lt_or_equiv_of_le {s t : seq} (Hs : regular s) (Ht : regular t) (Hle : s_le s t) :
s_lt s t s ≡ t :=
begin
apply sorry
end -- this is not constructive
theorem le_iff_lt_or_equiv {s t : seq} (Hs : regular s) (Ht : regular t) :
s_le s t ↔ s_lt s t s ≡ t :=
iff.intro (lt_or_equiv_of_le Hs Ht) (le_of_lt_or_equiv Hs Ht)-/
-------- lift to reg_seqs
definition r_lt (s t : reg_seq) := s_lt (reg_seq.sq s) (reg_seq.sq t)
definition r_le (s t : reg_seq) := s_le (reg_seq.sq s) (reg_seq.sq t)
definition r_sep (s t : reg_seq) := sep (reg_seq.sq s) (reg_seq.sq t)
theorem r_le_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v)
: r_le s t = r_le u v :=
propext (le_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
(reg_seq.is_reg v) Hsu Htv)
theorem r_lt_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v)
: r_lt s t = r_lt u v :=
propext (lt_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
(reg_seq.is_reg v) Hsu Htv)
theorem r_sep_well_defined (s t u v : reg_seq) (Hsu : requiv s u) (Htv : requiv t v)
: r_sep s t = r_sep u v :=
propext (sep_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u)
(reg_seq.is_reg v) Hsu Htv)
theorem r_le.refl (s : reg_seq) : r_le s s := le.refl (reg_seq.is_reg s)
theorem r_le.trans {s t u : reg_seq} (Hst : r_le s t) (Htu : r_le t u) : r_le s u :=
le.trans (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu
theorem r_equiv_of_le_of_ge {s t : reg_seq} (Hs : r_le s t) (Hu : r_le t s) :
requiv s t :=
equiv_of_le_of_ge (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Hu
theorem r_lt_iff_le_and_sep (s t : reg_seq) : r_lt s t ↔ r_le s t ∧ r_sep s t :=
lt_iff_le_and_sep (reg_seq.is_reg s) (reg_seq.is_reg t)
theorem r_add_le_add_of_le_right {s t : reg_seq} (H : r_le s t) (u : reg_seq) :
r_le (u + s) (u + t) :=
add_le_add_of_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) H
(reg_seq.sq u) (reg_seq.is_reg u)
theorem r_add_le_add_of_le_right_var (s t u : reg_seq) (H : r_le s t) :
r_le (u + s) (u + t) := r_add_le_add_of_le_right H u
theorem r_mul_pos_of_pos {s t : reg_seq} (Hs : r_lt r_zero s) (Ht : r_lt r_zero t) :
r_lt r_zero (s * t) :=
s_mul_gt_zero_of_gt_zero (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Ht
theorem r_mul_nonneg_of_nonneg {s t : reg_seq} (Hs : r_le r_zero s) (Ht : r_le r_zero t) :
r_le r_zero (s * t) :=
s_mul_ge_zero_of_ge_zero (reg_seq.is_reg s) (reg_seq.is_reg t) Hs Ht
theorem r_not_lt_self (s : reg_seq) : ¬ r_lt s s :=
not_lt_self (reg_seq.sq s)
theorem r_not_sep_self (s : reg_seq) : ¬ r_sep s s :=
not_sep_self (reg_seq.sq s)
theorem r_le_of_lt {s t : reg_seq} (H : r_lt s t) : r_le s t :=
s_le_of_s_lt (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_lt_of_le_of_lt {s t u : reg_seq} (Hst : r_le s t) (Htu : r_lt t u) : r_lt s u :=
s_lt_of_le_of_lt (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu
theorem r_lt_of_lt_of_le {s t u : reg_seq} (Hst : r_lt s t) (Htu : r_le t u) : r_lt s u :=
s_lt_of_lt_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Hst Htu
theorem r_add_lt_add_left (s t : reg_seq) (H : r_lt s t) (u : reg_seq) : r_lt (u + s) (u + t) :=
s_add_lt_add_left (reg_seq.is_reg s) (reg_seq.is_reg t) H (reg_seq.is_reg u)
theorem r_add_lt_add_left_var (s t u : reg_seq) (H : r_lt s t) : r_lt (u + s) (u + t) :=
r_add_lt_add_left s t H u
theorem r_zero_lt_one : r_lt r_zero r_one := s_zero_lt_one
theorem r_le_of_lt_or_eq (s t : reg_seq) (H : r_lt s t requiv s t) : r_le s t :=
le_of_lt_or_equiv (reg_seq.is_reg s) (reg_seq.is_reg t) H
----------
-- earlier versions are sorried
/-theorem r_le_iff_lt_or_equiv (s t : reg_seq) : r_le s t ↔ r_lt s t requiv s t :=
le_iff_lt_or_equiv (reg_seq.is_reg s) (reg_seq.is_reg t)
theorem r_le_or_ge (s t : reg_seq) : r_le s t r_le t s :=
le_or_ge (reg_seq.is_reg s) (reg_seq.is_reg t)-/
-----------
end s
open real
namespace real
definition lt (x y : ) := quot.lift_on₂ x y (λ a b, s.r_lt a b) s.r_lt_well_defined
infix `<` := lt
definition le (x y : ) := quot.lift_on₂ x y (λ a b, s.r_le a b) s.r_le_well_defined
infix `≤` := le
definition sep (x y : ) := quot.lift_on₂ x y (λ a b, s.r_sep a b) s.r_sep_well_defined
infix `≢` : 50 := sep
theorem le.refl (x : ) : x ≤ x :=
quot.induction_on x (λ t, s.r_le.refl t)
theorem le.trans (x y z : ) : x ≤ y → y ≤ z → x ≤ z :=
quot.induction_on₃ x y z (λ s t u, s.r_le.trans)
theorem eq_of_le_of_ge (x y : ) : x ≤ y → y ≤ x → x = y :=
quot.induction_on₂ x y (λ s t Hst Hts, quot.sound (s.r_equiv_of_le_of_ge Hst Hts))
theorem lt_iff_le_and_sep (x y : ) : x < y ↔ x ≤ y ∧ x ≢ y :=
quot.induction_on₂ x y (λ s t, s.r_lt_iff_le_and_sep s t)
theorem add_le_add_of_le_right_var (x y z : ) : x ≤ y → z + x ≤ z + y :=
quot.induction_on₃ x y z (λ s t u, s.r_add_le_add_of_le_right_var s t u)
theorem add_le_add_of_le_right (x y : ) : x ≤ y → ∀ z : , z + x ≤ z + y :=
take H z, add_le_add_of_le_right_var x y z H
theorem mul_gt_zero_of_gt_zero (x y : ) : zero < x → zero < y → zero < x * y :=
quot.induction_on₂ x y (λ s t, s.r_mul_pos_of_pos)
theorem mul_ge_zero_of_ge_zero (x y : ) : zero ≤ x → zero ≤ y → zero ≤ x * y :=
quot.induction_on₂ x y (λ s t, s.r_mul_nonneg_of_nonneg)
theorem not_sep_self (x : ) : ¬ x ≢ x :=
quot.induction_on x (λ s, s.r_not_sep_self s)
theorem not_lt_self (x : ) : ¬ x < x :=
quot.induction_on x (λ s, s.r_not_lt_self s)
theorem le_of_lt (x y : ) : x < y → x ≤ y :=
quot.induction_on₂ x y (λ s t H', s.r_le_of_lt H')
theorem lt_of_le_of_lt (x y z : ) : x ≤ y → y < z → x < z :=
quot.induction_on₃ x y z (λ s t u H H', s.r_lt_of_le_of_lt H H')
theorem lt_of_lt_of_le (x y z : ) : x < y → y ≤ z → x < z :=
quot.induction_on₃ x y z (λ s t u H H', s.r_lt_of_lt_of_le H H')
theorem add_lt_add_left_var (x y z : ) : x < y → z + x < z + y :=
quot.induction_on₃ x y z (λ s t u, s.r_add_lt_add_left_var s t u)
theorem add_lt_add_left (x y : ) : x < y → ∀ z : , z + x < z + y :=
take H z, add_lt_add_left_var x y z H
theorem zero_lt_one : zero < one := s.r_zero_lt_one
theorem le_of_lt_or_eq (x y : ) : x < y x = y → x ≤ y :=
(quot.induction_on₂ x y (λ s t H, or.elim H (take H', begin
apply s.r_le_of_lt_or_eq,
apply or.inl H'
end)
(take H', begin
apply s.r_le_of_lt_or_eq,
apply (or.inr (quot.exact H'))
end)))
----------
-- earlier versions are sorried
/-theorem le_iff_lt_or_eq (x y : ) : x ≤ y ↔ x < y x = y :=
iff.intro
(quot.induction_on₂ x y (λ s t H, or.elim (iff.mp ((s.r_le_iff_lt_or_equiv s t)) H)
(take H1, or.inl H1)
(take H2, or.inr (quot.sound H2))))
(quot.induction_on₂ x y (λ s t H, or.elim H (take H', begin
let H'' := iff.mp' (s.r_le_iff_lt_or_equiv s t),
apply H'' (or.inl H')
end)
(take H', begin
let H'' := iff.mp' (s.r_le_iff_lt_or_equiv s t),
apply H'' (or.inr (quot.exact H'))
end)))
theorem le_or_ge (x y : ) : x ≤ y y ≤ x :=
quot.induction_on₂ x y (λ s t, s.r_le_or_ge s t)-/
-------------
definition ordered_ring : algebra.ordered_ring :=
⦃ algebra.ordered_ring, comm_ring,
le_refl := le.refl,
le_trans := le.trans,
mul_pos := mul_gt_zero_of_gt_zero,
mul_nonneg := mul_ge_zero_of_ge_zero,
zero_ne_one := zero_ne_one,
add_le_add_left := add_le_add_of_le_right,
le_antisymm := eq_of_le_of_ge,
lt_irrefl := not_lt_self,
lt_of_le_of_lt := lt_of_le_of_lt,
lt_of_lt_of_le := lt_of_lt_of_le,
le_of_lt := le_of_lt,
add_lt_add_left := add_lt_add_left
-----------------------------------
--- here is where classical logic comes in
--theorem sep_is_eq (x y : ) : x ≢ y = ¬ (x = y) := sorry
/-theorem sep_is_eq (x y : ) : x ≢ y = ¬ (x = y) := begin
apply propext,
apply iff.intro,
intro Hsep,
intro Heq,
rewrite Heq at Hsep,
apply absurd Hsep !not_sep_self,
intro Hneq,
end-/
/-definition linear_ordered_comm_ring : algebra.linear_ordered_comm_ring :=
⦃ algebra.linear_ordered_comm_ring, ordered_ring, comm_ring,
zero_lt_one := zero_lt_one,
le_total := le_or_ge,
le_iff_lt_or_eq := le_iff_lt_or_eq
⦄-/
end real