9f08156a73
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
35 lines
986 B
Text
35 lines
986 B
Text
Variable N : Type
|
||
Variable h : N -> N -> N
|
||
|
||
-- Specialize congruence theorem for h-applications
|
||
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
|
||
Congr (Congr (Refl h) H1) H2
|
||
|
||
-- Declare some variables
|
||
Variable a : N
|
||
Variable b : N
|
||
Variable c : N
|
||
Variable d : N
|
||
Variable e : N
|
||
|
||
-- Add axioms stating facts about these variables
|
||
Axiom H1 : (a = b ∧ b = c) ∨ (d = c ∧ a = d)
|
||
Axiom H2 : b = e
|
||
|
||
-- Proof that (h a b) = (h c e)
|
||
Theorem T1 : (h a b) = (h c e) :=
|
||
DisjCases H1
|
||
(λ C1, CongrH (Trans (Conjunct1 C1) (Conjunct2 C1)) H2)
|
||
(λ C2, CongrH (Trans (Conjunct2 C2) (Conjunct1 C2)) H2)
|
||
|
||
-- We can use theorem T1 to prove other theorems
|
||
Theorem T2 : (h a (h a b)) = (h a (h c e)) :=
|
||
CongrH (Refl a) T1
|
||
|
||
-- Display the last two objects (i.e., theorems) added to the environment
|
||
print Environment 2
|
||
|
||
-- print implicit arguments
|
||
SetOption lean::pp::implicit true
|
||
SetOption pp::width 150
|
||
print Environment 2
|