49 lines
1.3 KiB
Text
49 lines
1.3 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Leonardo de Moura
|
||
-/
|
||
import data.nat
|
||
open nat
|
||
|
||
definition fib : nat → nat
|
||
| 0 := 1
|
||
| 1 := 1
|
||
| (n+2) := fib (n+1) + fib n
|
||
|
||
private definition fib_fast_aux : nat → (nat × nat)
|
||
| 0 := (0, 1)
|
||
| 1 := (1, 1)
|
||
| (n+2) :=
|
||
match fib_fast_aux (n+1) with
|
||
| (fn, fn1) := (fn1, fn1 + fn)
|
||
end
|
||
|
||
open prod.ops -- Get .1 .2 notation for pairs
|
||
|
||
definition fib_fast (n : nat) := (fib_fast_aux n).2
|
||
|
||
-- We now prove that fib_fast and fib are equal
|
||
|
||
lemma fib_fast_aux_lemma : ∀ n, (fib_fast_aux (succ n)).1 = (fib_fast_aux n).2
|
||
| 0 := rfl
|
||
| 1 := rfl
|
||
| (succ (succ n)) :=
|
||
begin
|
||
unfold fib_fast_aux at {1},
|
||
rewrite [-prod.eta (fib_fast_aux _)],
|
||
end
|
||
|
||
theorem fib_eq_fib_fast : ∀ n, fib_fast n = fib n
|
||
| 0 := rfl
|
||
| 1 := rfl
|
||
| (n+2) :=
|
||
begin
|
||
have feq : fib_fast n = fib n, from fib_eq_fib_fast n,
|
||
have f1eq : fib_fast (succ n) = fib (succ n), from fib_eq_fib_fast (succ n),
|
||
unfold [fib, fib_fast, fib_fast_aux],
|
||
rewrite [-prod.eta (fib_fast_aux _)],
|
||
fold fib_fast (succ n), rewrite f1eq,
|
||
rewrite fib_fast_aux_lemma,
|
||
fold fib_fast n, rewrite feq,
|
||
end
|