lean2/hott/hit/colimit.hlean
Floris van Doorn 5cacebcf86 feat(hott): replace assert by have and merge namespace equiv.ops into equiv
The coercion A ≃ B -> (A -> B) is now in namespace equiv. The notation ⁻¹ for symmetry of equivalences is not supported anymore. Use ⁻¹ᵉ
2016-03-03 10:13:21 -08:00

198 lines
7.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Definition of general colimits and sequential colimits.
-/
/- definition of a general colimit -/
open eq nat quotient sigma equiv is_trunc
namespace colimit
section
parameters {I J : Type} (A : I → Type) (dom cod : J → I)
(f : Π(j : J), A (dom j) → A (cod j))
variables {i : I} (a : A i) (j : J) (b : A (dom j))
local abbreviation B := Σ(i : I), A i
inductive colim_rel : B → B → Type :=
| Rmk : Π{j : J} (a : A (dom j)), colim_rel ⟨cod j, f j a⟩ ⟨dom j, a⟩
open colim_rel
local abbreviation R := colim_rel
-- TODO: define this in root namespace
definition colimit : Type :=
quotient colim_rel
definition incl : colimit :=
class_of R ⟨i, a⟩
abbreviation ι := @incl
definition cglue : ι (f j b) = ι b :=
eq_of_rel colim_rel (Rmk f b)
protected definition rec {P : colimit → Type}
(Pincl : Π⦃i : I⦄ (x : A i), P (ι x))
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) =[cglue j x] Pincl x)
(y : colimit) : P y :=
begin
fapply (quotient.rec_on y),
{ intro a, cases a, apply Pincl},
{ intro a a' H, cases H, apply Pglue}
end
protected definition rec_on [reducible] {P : colimit → Type} (y : colimit)
(Pincl : Π⦃i : I⦄ (x : A i), P (ι x))
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) =[cglue j x] Pincl x) : P y :=
rec Pincl Pglue y
theorem rec_cglue {P : colimit → Type}
(Pincl : Π⦃i : I⦄ (x : A i), P (ι x))
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) =[cglue j x] Pincl x)
{j : J} (x : A (dom j)) : apdo (rec Pincl Pglue) (cglue j x) = Pglue j x :=
!rec_eq_of_rel
protected definition elim {P : Type} (Pincl : Π⦃i : I⦄ (x : A i), P)
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) = Pincl x) (y : colimit) : P :=
rec Pincl (λj a, pathover_of_eq (Pglue j a)) y
protected definition elim_on [reducible] {P : Type} (y : colimit)
(Pincl : Π⦃i : I⦄ (x : A i), P)
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) = Pincl x) : P :=
elim Pincl Pglue y
theorem elim_cglue {P : Type}
(Pincl : Π⦃i : I⦄ (x : A i), P)
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) = Pincl x)
{j : J} (x : A (dom j)) : ap (elim Pincl Pglue) (cglue j x) = Pglue j x :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (cglue j x)),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim,rec_cglue],
end
protected definition elim_type (Pincl : Π⦃i : I⦄ (x : A i), Type)
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) ≃ Pincl x) (y : colimit) : Type :=
elim Pincl (λj a, ua (Pglue j a)) y
protected definition elim_type_on [reducible] (y : colimit)
(Pincl : Π⦃i : I⦄ (x : A i), Type)
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) ≃ Pincl x) : Type :=
elim_type Pincl Pglue y
theorem elim_type_cglue (Pincl : Π⦃i : I⦄ (x : A i), Type)
(Pglue : Π(j : J) (x : A (dom j)), Pincl (f j x) ≃ Pincl x)
{j : J} (x : A (dom j)) : transport (elim_type Pincl Pglue) (cglue j x) = Pglue j x :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_cglue];apply cast_ua_fn
protected definition rec_prop {P : colimit → Type} [H : Πx, is_prop (P x)]
(Pincl : Π⦃i : I⦄ (x : A i), P (ι x)) (y : colimit) : P y :=
rec Pincl (λa b, !is_prop.elimo) y
protected definition elim_prop {P : Type} [H : is_prop P] (Pincl : Π⦃i : I⦄ (x : A i), P)
(y : colimit) : P :=
elim Pincl (λa b, !is_prop.elim) y
end
end colimit
/- definition of a sequential colimit -/
namespace seq_colim
section
/-
we define it directly in terms of quotients. An alternative definition could be
definition seq_colim := colimit.colimit A id succ f
-/
parameters {A : → Type} (f : Π⦃n⦄, A n → A (succ n))
variables {n : } (a : A n)
local abbreviation B := Σ(n : ), A n
inductive seq_rel : B → B → Type :=
| Rmk : Π{n : } (a : A n), seq_rel ⟨succ n, f a⟩ ⟨n, a⟩
open seq_rel
local abbreviation R := seq_rel
-- TODO: define this in root namespace
definition seq_colim : Type :=
quotient seq_rel
definition inclusion : seq_colim :=
class_of R ⟨n, a⟩
abbreviation sι := @inclusion
definition glue : sι (f a) = sι a :=
eq_of_rel seq_rel (Rmk f a)
protected definition rec {P : seq_colim → Type}
(Pincl : Π⦃n : ℕ⦄ (a : A n), P (sι a))
(Pglue : Π(n : ) (a : A n), Pincl (f a) =[glue a] Pincl a) (aa : seq_colim) : P aa :=
begin
fapply (quotient.rec_on aa),
{ intro a, cases a, apply Pincl},
{ intro a a' H, cases H, apply Pglue}
end
protected definition rec_on [reducible] {P : seq_colim → Type} (aa : seq_colim)
(Pincl : Π⦃n : ℕ⦄ (a : A n), P (sι a))
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue a] Pincl a)
: P aa :=
rec Pincl Pglue aa
theorem rec_glue {P : seq_colim → Type} (Pincl : Π⦃n : ℕ⦄ (a : A n), P (sι a))
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue a] Pincl a) {n : } (a : A n)
: apdo (rec Pincl Pglue) (glue a) = Pglue a :=
!rec_eq_of_rel
protected definition elim {P : Type} (Pincl : Π⦃n : ℕ⦄ (a : A n), P)
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) = Pincl a) : seq_colim → P :=
rec Pincl (λn a, pathover_of_eq (Pglue a))
protected definition elim_on [reducible] {P : Type} (aa : seq_colim)
(Pincl : Π⦃n : ℕ⦄ (a : A n), P)
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) = Pincl a) : P :=
elim Pincl Pglue aa
theorem elim_glue {P : Type} (Pincl : Π⦃n : ℕ⦄ (a : A n), P)
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) = Pincl a) {n : } (a : A n)
: ap (elim Pincl Pglue) (glue a) = Pglue a :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant (glue a)),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim,rec_glue],
end
protected definition elim_type (Pincl : Π⦃n : ℕ⦄ (a : A n), Type)
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) ≃ Pincl a) : seq_colim → Type :=
elim Pincl (λn a, ua (Pglue a))
protected definition elim_type_on [reducible] (aa : seq_colim)
(Pincl : Π⦃n : ℕ⦄ (a : A n), Type)
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) ≃ Pincl a) : Type :=
elim_type Pincl Pglue aa
theorem elim_type_glue (Pincl : Π⦃n : ℕ⦄ (a : A n), Type)
(Pglue : Π⦃n : ℕ⦄ (a : A n), Pincl (f a) ≃ Pincl a) {n : } (a : A n)
: transport (elim_type Pincl Pglue) (glue a) = Pglue a :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn
protected definition rec_prop {P : seq_colim → Type} [H : Πx, is_prop (P x)]
(Pincl : Π⦃n : ℕ⦄ (a : A n), P (sι a)) (aa : seq_colim) : P aa :=
rec Pincl (λa b, !is_prop.elimo) aa
protected definition elim_prop {P : Type} [H : is_prop P] (Pincl : Π⦃n : ℕ⦄ (a : A n), P)
: seq_colim → P :=
elim Pincl (λa b, !is_prop.elim)
end
end seq_colim
attribute colimit.incl seq_colim.inclusion [constructor]
attribute colimit.rec colimit.elim [unfold 10] [recursor 10]
attribute colimit.elim_type [unfold 9]
attribute colimit.rec_on colimit.elim_on [unfold 8]
attribute colimit.elim_type_on [unfold 7]
attribute seq_colim.rec seq_colim.elim [unfold 6] [recursor 6]
attribute seq_colim.elim_type [unfold 5]
attribute seq_colim.rec_on seq_colim.elim_on [unfold 4]
attribute seq_colim.elim_type_on [unfold 3]