95 lines
3.2 KiB
Text
95 lines
3.2 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
Declaration of mapping cylinders
|
|
-/
|
|
|
|
import .type_quotient
|
|
|
|
open type_quotient eq sum equiv equiv.ops
|
|
|
|
namespace cylinder
|
|
section
|
|
|
|
universe u
|
|
parameters {A B : Type.{u}} (f : A → B)
|
|
|
|
local abbreviation C := B + A
|
|
inductive cylinder_rel : C → C → Type :=
|
|
| Rmk : Π(a : A), cylinder_rel (inl (f a)) (inr a)
|
|
open cylinder_rel
|
|
local abbreviation R := cylinder_rel
|
|
|
|
definition cylinder := type_quotient cylinder_rel -- TODO: define this in root namespace
|
|
|
|
definition base (b : B) : cylinder :=
|
|
class_of R (inl b)
|
|
|
|
definition top (a : A) : cylinder :=
|
|
class_of R (inr a)
|
|
|
|
definition seg (a : A) : base (f a) = top a :=
|
|
eq_of_rel cylinder_rel (Rmk f a)
|
|
|
|
protected definition rec {P : cylinder → Type}
|
|
(Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a))
|
|
(Pseg : Π(a : A), seg a ▸ Pbase (f a) = Ptop a) (x : cylinder) : P x :=
|
|
begin
|
|
fapply (type_quotient.rec_on x),
|
|
{ intro a, cases a,
|
|
apply Pbase,
|
|
apply Ptop},
|
|
{ intro a a' H, cases H, apply Pseg}
|
|
end
|
|
|
|
protected definition rec_on [reducible] {P : cylinder → Type} (x : cylinder)
|
|
(Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a))
|
|
(Pseg : Π(a : A), seg a ▸ Pbase (f a) = Ptop a) : P x :=
|
|
rec Pbase Ptop Pseg x
|
|
|
|
theorem rec_seg {P : cylinder → Type}
|
|
(Pbase : Π(b : B), P (base b)) (Ptop : Π(a : A), P (top a))
|
|
(Pseg : Π(a : A), seg a ▸ Pbase (f a) = Ptop a)
|
|
(a : A) : apd (rec Pbase Ptop Pseg) (seg a) = Pseg a :=
|
|
!rec_eq_of_rel
|
|
|
|
protected definition elim {P : Type} (Pbase : B → P) (Ptop : A → P)
|
|
(Pseg : Π(a : A), Pbase (f a) = Ptop a) (x : cylinder) : P :=
|
|
rec Pbase Ptop (λa, !tr_constant ⬝ Pseg a) x
|
|
|
|
protected definition elim_on [reducible] {P : Type} (x : cylinder) (Pbase : B → P) (Ptop : A → P)
|
|
(Pseg : Π(a : A), Pbase (f a) = Ptop a) : P :=
|
|
elim Pbase Ptop Pseg x
|
|
|
|
theorem elim_seg {P : Type} (Pbase : B → P) (Ptop : A → P)
|
|
(Pseg : Π(a : A), Pbase (f a) = Ptop a)
|
|
(a : A) : ap (elim Pbase Ptop Pseg) (seg a) = Pseg a :=
|
|
begin
|
|
apply (@cancel_left _ _ _ _ (tr_constant (seg a) (elim Pbase Ptop Pseg (base (f a))))),
|
|
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_seg],
|
|
end
|
|
|
|
protected definition elim_type (Pbase : B → Type) (Ptop : A → Type)
|
|
(Pseg : Π(a : A), Pbase (f a) ≃ Ptop a) (x : cylinder) : Type :=
|
|
elim Pbase Ptop (λa, ua (Pseg a)) x
|
|
|
|
protected definition elim_type_on [reducible] (x : cylinder) (Pbase : B → Type) (Ptop : A → Type)
|
|
(Pseg : Π(a : A), Pbase (f a) ≃ Ptop a) : Type :=
|
|
elim_type Pbase Ptop Pseg x
|
|
|
|
theorem elim_type_seg (Pbase : B → Type) (Ptop : A → Type)
|
|
(Pseg : Π(a : A), Pbase (f a) ≃ Ptop a)
|
|
(a : A) : transport (elim_type Pbase Ptop Pseg) (seg a) = Pseg a :=
|
|
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_seg];apply cast_ua_fn
|
|
|
|
end
|
|
|
|
end cylinder
|
|
|
|
attribute cylinder.base cylinder.top [constructor]
|
|
attribute cylinder.rec cylinder.elim [unfold-c 8]
|
|
attribute cylinder.elim_type [unfold-c 7]
|
|
attribute cylinder.rec_on cylinder.elim_on [unfold-c 5]
|
|
attribute cylinder.elim_type_on [unfold-c 4]
|