lean2/tests/lean/run/eq15.lean

17 lines
452 B
Text

import data.list
open list
set_option pp.implicit true
definition append : Π {A : Type}, list A → list A → list A,
append nil l := l,
append (h :: t) l := h :: (append t l)
theorem append_nil {A : Type} (l : list A) : append nil l = l :=
rfl
theorem append_cons {A : Type} (h : A) (t l : list A) : append (h :: t) l = h :: (append t l) :=
rfl
example : append (1 :: 2 :: nil) (3 :: 4 :: 5 :: nil) = (1 :: 2 :: 3 :: 4 :: 5 :: nil) :=
rfl