lean2/src/kernel/free_vars.cpp
2013-12-11 16:09:33 -08:00

361 lines
12 KiB
C++

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <algorithm>
#include "kernel/free_vars.h"
#include "kernel/expr_sets.h"
#include "kernel/replace_fn.h"
#include "kernel/metavar.h"
namespace lean {
/**
\brief Functional object for checking whether a kernel expression has free variables or not.
\remark We assume that a metavariable contains free variables.
This is an approximation, since we don't know how the metavariable will be instantiated.
*/
class has_free_vars_fn {
protected:
expr_cell_offset_set m_cached;
bool apply(optional<expr> const & e, unsigned offset) {
return e && apply(*e, offset);
}
bool apply(expr const & e, unsigned offset) {
// handle easy cases
switch (e.kind()) {
case expr_kind::Constant:
if (!const_type(e))
return false;
break;
case expr_kind::Type: case expr_kind::Value:
return false;
case expr_kind::MetaVar:
return true;
case expr_kind::Var:
return var_idx(e) >= offset;
case expr_kind::App: case expr_kind::Eq: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
break;
}
if (e.raw()->is_closed())
return false;
if (offset == 0) {
return apply_core(e, 0);
} else {
// The apply_core(e, 0) may seem redundant, but it allows us to
// mark nested closed expressions.
return apply_core(e, 0) && apply_core(e, offset);
}
}
bool apply_core(expr const & e, unsigned offset) {
bool shared = false;
if (is_shared(e)) {
shared = true;
expr_cell_offset p(e.raw(), offset);
if (m_cached.find(p) != m_cached.end())
return false;
}
bool result = false;
switch (e.kind()) {
case expr_kind::Constant:
lean_assert(const_type(e));
result = apply(const_type(e), offset);
break;
case expr_kind::Type: case expr_kind::Value: case expr_kind::Var: case expr_kind::MetaVar:
// easy cases were already handled
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::App:
result = std::any_of(begin_args(e), end_args(e), [=](expr const & arg){ return apply(arg, offset); });
break;
case expr_kind::Eq:
result = apply(eq_lhs(e), offset) || apply(eq_rhs(e), offset);
break;
case expr_kind::Lambda:
case expr_kind::Pi:
result = apply(abst_domain(e), offset) || apply(abst_body(e), offset + 1);
break;
case expr_kind::Let:
result = apply(let_type(e), offset) || apply(let_value(e), offset) || apply(let_body(e), offset + 1);
break;
}
if (!result) {
if (offset == 0)
e.raw()->set_closed();
if (shared)
m_cached.insert(expr_cell_offset(e.raw(), offset));
}
return result;
}
public:
has_free_vars_fn() {}
bool operator()(expr const & e) { return apply(e, 0); }
};
bool has_free_vars(expr const & e) {
return has_free_vars_fn()(e);
}
/**
\brief Functional object for computing the range [0, R) of free variables occurring
in an expression.
*/
class free_var_range_fn {
expr_map<unsigned> m_cached;
metavar_env const & m_menv;
static unsigned dec(unsigned s) { return (s == 0) ? 0 : s - 1; }
/*
\brief If a metavariable \c m was defined in a context \c ctx and <tt>ctx.size() == R</tt>,
then \c m can only contain free variables in the range <tt>[0, R)</tt>
So, if \c m does not have an associated local context, the answer is just \c R.
If \c m has an associated local context, we process it using the following rules
[inst:s v] R ===> if s >= R then R else max(R-1, range_of(v))
[lift:s:n] R ===> if s >= R then R else R + n
*/
unsigned process_metavar(expr const & m) {
lean_assert(is_metavar(m));
context ctx = m_menv.get_context(metavar_name(m));
unsigned R = ctx.size();
if (has_local_context(m)) {
local_context lctx = metavar_lctx(m);
buffer<local_entry> lentries;
to_buffer(lctx, lentries);
unsigned i = lentries.size();
while (i > 0) {
--i;
local_entry const & entry = lentries[i];
if (entry.is_inst()) {
if (entry.s() < R) {
R = std::max(dec(R), apply(entry.v()));
}
} else {
if (entry.s() < R)
R += entry.n();
}
}
}
return R;
}
unsigned apply(optional<expr> const & e) {
return e ? apply(*e) : 0;
}
unsigned apply(expr const & e) {
// handle easy cases
switch (e.kind()) {
case expr_kind::Constant:
if (!const_type(e))
return 0;
break;
case expr_kind::Type: case expr_kind::Value:
return 0;
case expr_kind::Var:
return var_idx(e) + 1;
case expr_kind::MetaVar: case expr_kind::App: case expr_kind::Eq:
case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
break;
}
if (e.raw()->is_closed())
return 0;
bool shared = false;
if (is_shared(e)) {
shared = true;
auto it = m_cached.find(e);
if (it != m_cached.end())
return it->second;
}
unsigned result = 0;
switch (e.kind()) {
case expr_kind::Constant:
lean_assert(const_type(e));
result = apply(const_type(e));
break;
case expr_kind::Type: case expr_kind::Value: case expr_kind::Var:
// easy cases were already handled
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::MetaVar:
result = process_metavar(e);
break;
case expr_kind::App:
for (auto const & c : args(e))
result = std::max(result, apply(c));
break;
case expr_kind::Eq:
result = std::max(apply(eq_lhs(e)), apply(eq_rhs(e)));
break;
case expr_kind::Lambda:
case expr_kind::Pi:
result = std::max(apply(abst_domain(e)), dec(apply(abst_body(e))));
break;
case expr_kind::Let:
result = std::max({apply(let_type(e)), apply(let_value(e)), dec(apply(let_body(e)))});
break;
}
if (shared)
m_cached.insert(mk_pair(e, result));
return result;
}
public:
free_var_range_fn(metavar_env const & menv):m_menv(menv) {}
unsigned operator()(expr const & e) { return apply(e); }
};
unsigned free_var_range(expr const & e, metavar_env const & menv) {
return free_var_range_fn(menv)(e);
}
/**
\brief Functional object for checking whether a kernel expression has a free variable in the range <tt>[low, high)</tt> or not.
\remark We assume that a metavariable contains free variables.
This is an approximation, since we don't know how the metavariable will be instantiated.
*/
class has_free_var_in_range_fn {
protected:
unsigned m_low;
unsigned m_high;
expr_cell_offset_set m_cached;
std::unique_ptr<free_var_range_fn> m_range_fn;
bool apply(optional<expr> const & e, unsigned offset) {
return e && apply(*e, offset);
}
bool apply(expr const & e, unsigned offset) {
// handle easy cases
switch (e.kind()) {
case expr_kind::Constant:
if (!const_type(e))
return false;
break;
case expr_kind::Type: case expr_kind::Value:
return false;
case expr_kind::MetaVar:
if (m_range_fn)
break; // it is not cheap
else
return true; // assume that any free variable can occur in the metavariable
case expr_kind::Var:
return var_idx(e) >= offset + m_low && var_idx(e) < offset + m_high;
case expr_kind::App: case expr_kind::Eq: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Let:
break;
}
if (e.raw()->is_closed())
return false;
bool shared = false;
if (is_shared(e)) {
shared = true;
expr_cell_offset p(e.raw(), offset);
if (m_cached.find(p) != m_cached.end())
return false;
}
bool result = false;
switch (e.kind()) {
case expr_kind::Constant:
lean_assert(const_type(e));
result = apply(const_type(e), offset);
break;
case expr_kind::Type: case expr_kind::Value: case expr_kind::Var:
// easy cases were already handled
lean_unreachable(); // LCOV_EXCL_LINE
case expr_kind::MetaVar: {
lean_assert(m_range_fn);
unsigned R = (*m_range_fn)(e);
if (R > 0) {
unsigned max_fvar_idx = R - 1;
result = max_fvar_idx >= offset + m_low;
// Remark: Variable #0 may occur in \c e.
// So, we don't have to check the upper bound offset + m_high;
}
break;
}
case expr_kind::App:
result = std::any_of(begin_args(e), end_args(e), [=](expr const & arg){ return apply(arg, offset); });
break;
case expr_kind::Eq:
result = apply(eq_lhs(e), offset) || apply(eq_rhs(e), offset);
break;
case expr_kind::Lambda:
case expr_kind::Pi:
result = apply(abst_domain(e), offset) || apply(abst_body(e), offset + 1);
break;
case expr_kind::Let:
result = apply(let_type(e), offset) || apply(let_value(e), offset) || apply(let_body(e), offset + 1);
break;
}
if (!result && shared) {
m_cached.insert(expr_cell_offset(e.raw(), offset));
}
return result;
}
public:
has_free_var_in_range_fn(unsigned low, unsigned high, metavar_env const * menv):
m_low(low),
m_high(high) {
lean_assert(low < high);
if (menv)
m_range_fn.reset(new free_var_range_fn(*menv));
}
bool operator()(expr const & e) { return apply(e, 0); }
};
bool has_free_var(expr const & e, unsigned low, unsigned high, metavar_env const * menv) {
return has_free_var_in_range_fn(low, high, menv)(e);
}
expr lower_free_vars(expr const & e, unsigned s, unsigned d, metavar_env const * menv) {
lean_assert(s >= d);
lean_assert(!has_free_var(e, s-d, s, menv));
auto f = [=](expr const & e, unsigned offset) -> expr {
if (is_var(e) && var_idx(e) >= s + offset) {
lean_assert(var_idx(e) >= offset + d);
return mk_var(var_idx(e) - d);
} else {
return e;
}
};
return replace_fn<decltype(f)>(f)(e);
}
expr lift_free_vars(expr const & e, unsigned s, unsigned d) {
if (d == 0)
return e;
auto f = [=](expr const & e, unsigned offset) -> expr {
if (is_var(e) && var_idx(e) >= s + offset) {
return mk_var(var_idx(e) + d);
} else if (is_metavar(e)) {
return add_lift(e, s + offset, d);
} else {
return e;
}
};
return replace_fn<decltype(f)>(f)(e);
}
}