56 lines
1.4 KiB
Text
56 lines
1.4 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Leonardo de Moura
|
||
|
||
Factorial
|
||
-/
|
||
import data.nat.div
|
||
open algebra
|
||
|
||
namespace nat
|
||
definition fact : nat → nat
|
||
| 0 := 1
|
||
| (succ n) := (succ n) * fact n
|
||
|
||
lemma fact_zero : fact 0 = 1 :=
|
||
rfl
|
||
|
||
lemma fact_one : fact 1 = 1 :=
|
||
rfl
|
||
|
||
lemma fact_succ (n) : fact (succ n) = succ n * fact n :=
|
||
rfl
|
||
|
||
lemma fact_pos : ∀ n, fact n > 0
|
||
| 0 := zero_lt_one
|
||
| (succ n) := mul_pos !succ_pos (fact_pos n)
|
||
|
||
lemma fact_ne_zero (n : ℕ) : fact n ≠ 0 := ne_of_gt !fact_pos
|
||
|
||
lemma dvd_fact : ∀ {m n}, m > 0 → m ≤ n → m ∣ fact n
|
||
| m 0 h₁ h₂ := absurd h₁ (not_lt_of_ge h₂)
|
||
| m (succ n) h₁ h₂ :=
|
||
begin
|
||
rewrite fact_succ,
|
||
cases (eq_or_lt_of_le h₂) with he hl,
|
||
{subst m, apply dvd_mul_right},
|
||
{have aux : m ∣ fact n, from dvd_fact h₁ (le_of_lt_succ hl),
|
||
apply dvd_mul_of_dvd_right aux}
|
||
end
|
||
|
||
lemma fact_le {m n} : m ≤ n → fact m ≤ fact n :=
|
||
begin
|
||
induction n with n ih,
|
||
{intro h,
|
||
have meq0 : m = 0, from eq_zero_of_le_zero h,
|
||
subst m},
|
||
{intro m_le_succ_n,
|
||
cases (eq_or_lt_of_le m_le_succ_n) with h₁ h₂,
|
||
{subst m},
|
||
{transitivity (fact n),
|
||
exact ih (le_of_lt_succ h₂),
|
||
rewrite [fact_succ, -one_mul at {1}],
|
||
exact mul_le_mul (succ_le_succ (zero_le n)) !le.refl}}
|
||
end
|
||
end nat
|