240 lines
7.7 KiB
Text
240 lines
7.7 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
|
import .prop
|
|
|
|
-- logic.connectives.eq
|
|
-- ====================
|
|
|
|
-- Equality.
|
|
|
|
-- eq
|
|
-- --
|
|
|
|
inductive eq {A : Type} (a : A) : A → Prop :=
|
|
refl : eq a a
|
|
|
|
infix `=` := eq
|
|
definition rfl {A : Type} {a : A} := eq.refl a
|
|
|
|
-- proof irrelevance is built in
|
|
theorem proof_irrel {a : Prop} {H₁ H₂ : a} : H₁ = H₂ :=
|
|
rfl
|
|
|
|
namespace eq
|
|
section
|
|
variables {A : Type}
|
|
variables {a b c : A}
|
|
theorem id_refl (H₁ : a = a) : H₁ = (eq.refl a) :=
|
|
proof_irrel
|
|
|
|
theorem irrel (H₁ H₂ : a = b) : H₁ = H₂ :=
|
|
proof_irrel
|
|
|
|
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
|
|
rec H₂ H₁
|
|
|
|
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
|
subst H₂ H₁
|
|
|
|
theorem symm (H : a = b) : b = a :=
|
|
subst H (refl a)
|
|
end
|
|
namespace ops
|
|
postfix `⁻¹` := symm
|
|
infixr `⬝` := trans
|
|
infixr `▸` := subst
|
|
end ops
|
|
end eq
|
|
|
|
calc_subst eq.subst
|
|
calc_refl eq.refl
|
|
calc_trans eq.trans
|
|
|
|
open eq.ops
|
|
|
|
namespace eq
|
|
definition rec_on {A : Type} {a a' : A} {B : Πa' : A, a = a' → Type} (H₁ : a = a') (H₂ : B a (refl a)) : B a' H₁ :=
|
|
eq.rec (λH₁ : a = a, show B a H₁, from H₂) H₁ H₁
|
|
|
|
theorem rec_on_id {A : Type} {a : A} {B : Πa' : A, a = a' → Type} (H : a = a) (b : B a H) : rec_on H b = b :=
|
|
refl (rec_on rfl b)
|
|
|
|
theorem rec_on_constant {A : Type} {a a' : A} {B : Type} (H : a = a') (b : B) : rec_on H b = b :=
|
|
rec_on H (λ(H' : a = a), rec_on_id H' b) H
|
|
|
|
theorem rec_on_constant2 {A : Type} {a₁ a₂ a₃ a₄ : A} {B : Type} (H₁ : a₁ = a₂) (H₂ : a₃ = a₄) (b : B) :
|
|
rec_on H₁ b = rec_on H₂ b :=
|
|
rec_on_constant H₁ b ⬝ (rec_on_constant H₂ b)⁻¹
|
|
|
|
theorem rec_on_irrel {A B : Type} {a a' : A} {f : A → B} {D : B → Type} (H : a = a') (H' : f a = f a') (b : D (f a)) :
|
|
rec_on H b = rec_on H' b :=
|
|
rec_on H (λ(H : a = a) (H' : f a = f a), rec_on_id H b ⬝ rec_on_id H' b⁻¹) H H'
|
|
|
|
theorem rec_id {A : Type} {a : A} {B : A → Type} (H : a = a) (b : B a) : rec b H = b :=
|
|
id_refl H⁻¹ ▸ refl (eq.rec b (refl a))
|
|
|
|
theorem rec_on_compose {A : Type} {a b c : A} {P : A → Type} (H₁ : a = b) (H₂ : b = c)
|
|
(u : P a) :
|
|
rec_on H₂ (rec_on H₁ u) = rec_on (trans H₁ H₂) u :=
|
|
(show ∀ H₂ : b = c, rec_on H₂ (rec_on H₁ u) = rec_on (trans H₁ H₂) u,
|
|
from rec_on H₂ (take (H₂ : b = b), rec_on_id H₂ _))
|
|
H₂
|
|
end eq
|
|
|
|
open eq
|
|
|
|
section
|
|
variables {A B C D E F : Type}
|
|
variables {a a' : A} {b b' : B} {c c' : C} {d d' : D} {e e' : E} {f f' : F}
|
|
|
|
theorem congr_fun {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
|
|
H ▸ rfl
|
|
|
|
theorem congr_arg (f : A → B) (H : a = a') : f a = f a' :=
|
|
H ▸ rfl
|
|
|
|
theorem congr {f g : A → B} (H₁ : f = g) (H₂ : a = a') : f a = g a' :=
|
|
H₁ ▸ H₂ ▸ rfl
|
|
|
|
theorem congr_arg2 (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' :=
|
|
congr (congr_arg f Ha) Hb
|
|
|
|
theorem congr_arg3 (f : A → B → C → D) (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f a' b' c' :=
|
|
congr (congr_arg2 f Ha Hb) Hc
|
|
|
|
theorem congr_arg4 (f : A → B → C → D → E) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') : f a b c d = f a' b' c' d' :=
|
|
congr (congr_arg3 f Ha Hb Hc) Hd
|
|
|
|
theorem congr_arg5 (f : A → B → C → D → E → F) (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
|
|
: f a b c d e = f a' b' c' d' e' :=
|
|
congr (congr_arg4 f Ha Hb Hc Hd) He
|
|
|
|
theorem congr2 (f f' : A → B → C) (Hf : f = f') (Ha : a = a') (Hb : b = b') : f a b = f' a' b' :=
|
|
Hf ▸ congr_arg2 f Ha Hb
|
|
|
|
theorem congr3 (f f' : A → B → C → D) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') : f a b c = f' a' b' c' :=
|
|
Hf ▸ congr_arg3 f Ha Hb Hc
|
|
|
|
theorem congr4 (f f' : A → B → C → D → E) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d')
|
|
: f a b c d = f' a' b' c' d' :=
|
|
Hf ▸ congr_arg4 f Ha Hb Hc Hd
|
|
|
|
theorem congr5 (f f' : A → B → C → D → E → F) (Hf : f = f') (Ha : a = a') (Hb : b = b') (Hc : c = c') (Hd : d = d') (He : e = e')
|
|
: f a b c d e = f' a' b' c' d' e' :=
|
|
Hf ▸ congr_arg5 f Ha Hb Hc Hd He
|
|
end
|
|
|
|
section
|
|
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {R : Type}
|
|
variables {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
|
|
|
theorem congr_arg2_dep (f : Πa, B a → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) : f a₁ b₁ = f a₂ b₂ :=
|
|
eq.rec_on H₁
|
|
(λ (b₂ : B a₁) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂),
|
|
calc
|
|
f a₁ b₁ = f a₁ (eq.rec_on H₁ b₁) : {(eq.rec_on_id H₁ b₁)⁻¹}
|
|
... = f a₁ b₂ : {H₂})
|
|
b₂ H₁ H₂
|
|
|
|
theorem congr_arg3_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂)
|
|
(H₃ : eq.rec_on (congr_arg2_dep C H₁ H₂) c₁ = c₂) : f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
|
eq.rec_on H₁
|
|
(λ (b₂ : B a₁) (H₂ : b₁ = b₂) (c₂ : C a₁ b₂)
|
|
(H₃ : (rec_on (congr_arg2_dep C (refl a₁) H₂) c₁) = c₂),
|
|
have H₃' : eq.rec_on H₂ c₁ = c₂,
|
|
from (rec_on_irrel H₂ (congr_arg2_dep C (refl a₁) H₂) c₁⁻¹) ▸ H₃,
|
|
congr_arg2_dep (f a₁) H₂ H₃')
|
|
b₂ H₂ c₂ H₃
|
|
end
|
|
|
|
section
|
|
variables {A B : Type} {C : A → B → Type} {R : Type}
|
|
variables {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂}
|
|
theorem congr_arg3_ndep_dep (f : Πa b, C a b → R) (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.rec_on (congr_arg2 C H₁ H₂) c₁ = c₂) :
|
|
f a₁ b₁ c₁ = f a₂ b₂ c₂ :=
|
|
congr_arg3_dep f H₁ (rec_on_constant H₁ b₁ ⬝ H₂) H₃
|
|
end
|
|
|
|
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x :=
|
|
take x, congr_fun H x
|
|
|
|
section
|
|
variables {a b c : Prop}
|
|
|
|
theorem eqmp (H₁ : a = b) (H₂ : a) : b :=
|
|
H₁ ▸ H₂
|
|
|
|
theorem eqmpr (H₁ : a = b) (H₂ : b) : a :=
|
|
H₁⁻¹ ▸ H₂
|
|
|
|
theorem eq_true_elim (H : a = true) : a :=
|
|
H⁻¹ ▸ trivial
|
|
|
|
theorem eq_false_elim (H : a = false) : ¬a :=
|
|
assume Ha : a, H ▸ Ha
|
|
|
|
theorem imp_trans (H₁ : a → b) (H₂ : b → c) : a → c :=
|
|
assume Ha, H₂ (H₁ Ha)
|
|
|
|
theorem imp_eq_trans (H₁ : a → b) (H₂ : b = c) : a → c :=
|
|
assume Ha, H₂ ▸ (H₁ Ha)
|
|
|
|
theorem eq_imp_trans (H₁ : a = b) (H₂ : b → c) : a → c :=
|
|
assume Ha, H₂ (H₁ ▸ Ha)
|
|
end
|
|
|
|
-- ne
|
|
-- --
|
|
|
|
definition ne {A : Type} (a b : A) := ¬(a = b)
|
|
infix `≠` := ne
|
|
|
|
namespace ne
|
|
section
|
|
variable {A : Type}
|
|
variables {a b : A}
|
|
|
|
theorem intro : (a = b → false) → a ≠ b :=
|
|
assume H, H
|
|
|
|
theorem elim : a ≠ b → a = b → false :=
|
|
assume H₁ H₂, H₁ H₂
|
|
|
|
theorem irrefl : a ≠ a → false :=
|
|
assume H, H rfl
|
|
|
|
theorem symm : a ≠ b → b ≠ a :=
|
|
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
|
|
end
|
|
end ne
|
|
|
|
section
|
|
variables {A : Type} {a b c : A}
|
|
|
|
theorem a_neq_a_elim : a ≠ a → false :=
|
|
assume H, H rfl
|
|
|
|
theorem eq_ne_trans : a = b → b ≠ c → a ≠ c :=
|
|
assume H₁ H₂, H₁⁻¹ ▸ H₂
|
|
|
|
theorem ne_eq_trans : a ≠ b → b = c → a ≠ c :=
|
|
assume H₁ H₂, H₂ ▸ H₁
|
|
end
|
|
|
|
calc_trans eq_ne_trans
|
|
calc_trans ne_eq_trans
|
|
|
|
section
|
|
variables {p : Prop}
|
|
|
|
theorem p_ne_false : p → p ≠ false :=
|
|
assume (Hp : p) (Heq : p = false), Heq ▸ Hp
|
|
|
|
theorem p_ne_true : ¬p → p ≠ true :=
|
|
assume (Hnp : ¬p) (Heq : p = true), absurd trivial (Heq ▸ Hnp)
|
|
end
|
|
|
|
theorem true_ne_false : ¬true = false :=
|
|
assume H : true = false,
|
|
H ▸ trivial
|