lean2/library/logic/core/identities.lean
Leonardo de Moura 5a927b6db4 refactor(library/logic/cast): define heq using inductive datatypes
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-10-03 21:40:51 -07:00

149 lines
5.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Jeremy Avigad, Leonardo de Moura
-- logic.connectives.identities
-- ============================
-- Useful logical identities. In the absence of propositional extensionality, some of the
-- calculations use the type class support provided by logic.connectives.instances
import logic.core.instances logic.core.decidable logic.core.quantifiers logic.core.cast
open relation decidable relation.iff_ops
theorem or_right_comm (a b c : Prop) : (a b) c ↔ (a c) b :=
calc
(a b) c ↔ a (b c) : or.assoc
... ↔ a (c b) : {or.comm}
... ↔ (a c) b : iff.symm or.assoc
theorem or_left_comm (a b c : Prop) : a (b c)↔ b (a c) :=
calc
a (b c) ↔ (a b) c : iff.symm or.assoc
... ↔ (b a) c : {or.comm}
... ↔ b (a c) : or.assoc
theorem and_right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b :=
calc
(a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and.assoc
... ↔ a ∧ (c ∧ b) : {and.comm}
... ↔ (a ∧ c) ∧ b : iff.symm and.assoc
theorem and_left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) :=
calc
a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff.symm and.assoc
... ↔ (b ∧ a) ∧ c : {and.comm}
... ↔ b ∧ (a ∧ c) : and.assoc
theorem not_not_iff {a : Prop} {D : decidable a} : (¬¬a) ↔ a :=
iff.intro
(assume H : ¬¬a,
by_cases (assume H' : a, H') (assume H' : ¬a, absurd H' H))
(assume H : a, assume H', H' H)
theorem not_not_elim {a : Prop} {D : decidable a} (H : ¬¬a) : a :=
iff.mp not_not_iff H
theorem not_true : (¬true) ↔ false :=
iff.intro (assume H, H trivial) false_elim
theorem not_false : (¬false) ↔ true :=
iff.intro (assume H, trivial) (assume H H', H')
theorem not_or {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a b)) ↔ (¬a ∧ ¬b) :=
iff.intro
(assume H, or.elim (em a)
(assume Ha, absurd (or.inl Ha) H)
(assume Hna, or.elim (em b)
(assume Hb, absurd (or.inr Hb) H)
(assume Hnb, and.intro Hna Hnb)))
(assume (H : ¬a ∧ ¬b) (N : a b),
or.elim N
(assume Ha, absurd Ha (and.elim_left H))
(assume Hb, absurd Hb (and.elim_right H)))
theorem not_and {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a ∧ b)) ↔ (¬a ¬b) :=
iff.intro
(assume H, or.elim (em a)
(assume Ha, or.elim (em b)
(assume Hb, absurd (and.intro Ha Hb) H)
(assume Hnb, or.inr Hnb))
(assume Hna, or.inl Hna))
(assume (H : ¬a ¬b) (N : a ∧ b),
or.elim H
(assume Hna, absurd (and.elim_left N) Hna)
(assume Hnb, absurd (and.elim_right N) Hnb))
theorem imp_or {a b : Prop} {Da : decidable a} : (a → b) ↔ (¬a b) :=
iff.intro
(assume H : a → b, (or.elim (em a)
(assume Ha : a, or.inr (H Ha))
(assume Hna : ¬a, or.inl Hna)))
(assume (H : ¬a b) (Ha : a),
or.resolve_right H (not_not_iff⁻¹ ▸ Ha))
theorem not_implies {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a → b)) ↔ (a ∧ ¬b) :=
calc (¬(a → b)) ↔ (¬(¬a b)) : {imp_or}
... ↔ (¬¬a ∧ ¬b) : not_or
... ↔ (a ∧ ¬b) : {not_not_iff}
theorem peirce {a b : Prop} {D : decidable a} : ((a → b) → a) → a :=
assume H, by_contradiction (assume Hna : ¬a,
have Hnna : ¬¬a, from not_implies_left (mt H Hna),
absurd (not_not_elim Hnna) Hna)
theorem not_exists_forall {A : Type} {P : A → Prop} {D : ∀x, decidable (P x)}
(H : ¬∃x, P x) : ∀x, ¬P x :=
take x, or.elim (em (P x))
(assume Hp : P x, absurd (exists_intro x Hp) H)
(assume Hn : ¬P x, Hn)
theorem not_forall_exists {A : Type} {P : A → Prop} {D : ∀x, decidable (P x)}
{D' : decidable (∃x, ¬P x)} (H : ¬∀x, P x) :
∃x, ¬P x :=
@by_contradiction _ D' (assume H1 : ¬∃x, ¬P x,
have H2 : ∀x, ¬¬P x, from @not_exists_forall _ _ (take x, not_decidable (D x)) H1,
have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x),
absurd H3 H)
theorem iff_true_intro {a : Prop} (H : a) : a ↔ true :=
iff.intro
(assume H1 : a, trivial)
(assume H2 : true, H)
theorem iff_false_intro {a : Prop} (H : ¬a) : a ↔ false :=
iff.intro
(assume H1 : a, absurd H1 H)
(assume H2 : false, false_elim H2)
theorem a_neq_a {A : Type} (a : A) : (a ≠ a) ↔ false :=
iff.intro
(assume H, a_neq_a_elim H)
(assume H, false_elim H)
theorem eq_id {A : Type} (a : A) : (a = a) ↔ true :=
iff_true_intro rfl
theorem heq_id {A : Type} (a : A) : (a == a) ↔ true :=
iff_true_intro (heq.refl a)
theorem a_iff_not_a (a : Prop) : (a ↔ ¬a) ↔ false :=
iff.intro
(assume H,
have H' : ¬a, from assume Ha, (H ▸ Ha) Ha,
H' (H⁻¹ ▸ H'))
(assume H, false_elim H)
theorem true_eq_false : (true ↔ false) ↔ false :=
not_true ▸ (a_iff_not_a true)
theorem false_eq_true : (false ↔ true) ↔ false :=
not_false ▸ (a_iff_not_a false)
theorem a_eq_true (a : Prop) : (a ↔ true) ↔ a :=
iff.intro (assume H, iff.true_elim H) (assume H, iff_true_intro H)
theorem a_eq_false (a : Prop) : (a ↔ false) ↔ ¬a :=
iff.intro (assume H, iff.false_elim H) (assume H, iff_false_intro H)