lean2/hott/init/datatypes.hlean

101 lines
2.7 KiB
Text

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jakob von Raumer
Basic datatypes
-/
prelude
notation [parsing-only] `Type'` := Type.{_+1}
notation [parsing-only] `Type₊` := Type.{_+1}
notation `Type₀` := Type.{0}
notation `Type₁` := Type.{1}
notation `Type₂` := Type.{2}
notation `Type₃` := Type.{3}
inductive poly_unit.{l} : Type.{l} :=
star : poly_unit
inductive unit : Type₀ :=
star : unit
inductive empty : Type₀
inductive eq.{l} {A : Type.{l}} (a : A) : A → Type.{l} :=
refl : eq a a
structure lift.{l₁ l₂} (A : Type.{l₁}) : Type.{max l₁ l₂} :=
up :: (down : A)
inductive prod (A B : Type) :=
mk : A → B → prod A B
definition prod.pr1 [reducible] [unfold-c 3] {A B : Type} (p : prod A B) : A :=
prod.rec (λ a b, a) p
definition prod.pr2 [reducible] [unfold-c 3] {A B : Type} (p : prod A B) : B :=
prod.rec (λ a b, b) p
definition prod.destruct [reducible] := @prod.cases_on
inductive sum (A B : Type) : Type :=
| inl {} : A → sum A B
| inr {} : B → sum A B
definition sum.intro_left [reducible] {A : Type} (B : Type) (a : A) : sum A B :=
sum.inl a
definition sum.intro_right [reducible] (A : Type) {B : Type} (b : B) : sum A B :=
sum.inr b
inductive sigma {A : Type} (B : A → Type) :=
mk : Π (a : A), B a → sigma B
definition sigma.pr1 [reducible] [unfold-c 3] {A : Type} {B : A → Type} (p : sigma B) : A :=
sigma.rec (λ a b, a) p
definition sigma.pr2 [reducible] [unfold-c 3] {A : Type} {B : A → Type} (p : sigma B) : B (sigma.pr1 p) :=
sigma.rec (λ a b, b) p
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
inductive pos_num : Type :=
| one : pos_num
| bit1 : pos_num → pos_num
| bit0 : pos_num → pos_num
namespace pos_num
definition succ (a : pos_num) : pos_num :=
pos_num.rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
end pos_num
inductive num : Type :=
| zero : num
| pos : pos_num → num
namespace num
open pos_num
definition succ (a : num) : num :=
num.rec_on a (pos one) (λp, pos (succ p))
end num
inductive bool : Type :=
| ff : bool
| tt : bool
inductive char : Type :=
mk : bool → bool → bool → bool → bool → bool → bool → bool → char
inductive string : Type :=
| empty : string
| str : char → string → string
inductive nat :=
| zero : nat
| succ : nat → nat
inductive option (A : Type) : Type :=
| none {} : option A
| some : A → option A