62 lines
1.5 KiB
Text
62 lines
1.5 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Authors: Leonardo de Moura, Jeremy Avigad
|
|
|
|
import general_notation
|
|
|
|
definition Prop [inline] := Type.{0}
|
|
|
|
|
|
-- implication
|
|
-- -----------
|
|
|
|
abbreviation imp (a b : Prop) : Prop := a → b
|
|
|
|
|
|
-- true and false
|
|
-- --------------
|
|
|
|
inductive false : Prop
|
|
|
|
theorem false_elim (c : Prop) (H : false) : c :=
|
|
false_rec c H
|
|
|
|
inductive true : Prop :=
|
|
trivial : true
|
|
|
|
abbreviation not (a : Prop) := a → false
|
|
prefix `¬` := not
|
|
|
|
|
|
-- not
|
|
-- ---
|
|
|
|
theorem not_intro {a : Prop} (H : a → false) : ¬a := H
|
|
|
|
theorem not_elim {a : Prop} (H1 : ¬a) (H2 : a) : false := H1 H2
|
|
|
|
theorem absurd {a : Prop} (H1 : a) (H2 : ¬a) : false := H2 H1
|
|
|
|
theorem not_not_intro {a : Prop} (Ha : a) : ¬¬a :=
|
|
assume Hna : ¬a, absurd Ha Hna
|
|
|
|
theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a :=
|
|
assume Ha : a, absurd (H1 Ha) H2
|
|
|
|
theorem absurd_elim {a : Prop} {b : Prop} (H1 : a) (H2 : ¬a) : b :=
|
|
false_elim b (absurd H1 H2)
|
|
|
|
theorem absurd_not_true (H : ¬true) : false :=
|
|
absurd trivial H
|
|
|
|
theorem not_false_trivial : ¬false :=
|
|
assume H : false, H
|
|
|
|
theorem not_implies_left {a b : Prop} (H : ¬(a → b)) : ¬¬a :=
|
|
assume Hna : ¬a, absurd (assume Ha : a, absurd_elim Ha Hna) H
|
|
|
|
theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b :=
|
|
assume Hb : b, absurd (assume Ha : a, Hb) H
|
|
|
|
theorem contrapos {a b : Prop} (Hab : a → b) : (¬b → ¬a) :=
|
|
assume Hnb Ha, Hnb (Hab Ha)
|