lean2/library/data/set/basic.lean

1007 lines
35 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Leonardo de Moura
-/
import logic.connectives logic.identities algebra.binary
open eq.ops binary function
definition set (X : Type) := X → Prop
namespace set
variable {X : Type}
/- membership and subset -/
definition mem (x : X) (a : set X) := a x
infix ∈ := mem
notation a ∉ b := ¬ mem a b
theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
funext (take x, propext (H x))
definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b
infix ⊆ := subset
definition superset (s t : set X) : Prop := t ⊆ s
infix ⊇ := superset
theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H
theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
take x, assume ax, subbc (subab ax)
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
-- an alterantive name
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
subset.antisymm h₁ h₂
theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
assume h₁ h₂, h₁ _ h₂
/- strict subset -/
definition strict_subset (a b : set X) := a ⊆ b ∧ a ≠ b
infix ` ⊂ `:50 := strict_subset
theorem strict_subset.irrefl (a : set X) : ¬ a ⊂ a :=
assume h, absurd rfl (and.elim_right h)
/- bounded quantification -/
abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x
notation `forallb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r
notation `∀₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r
abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x
notation `existsb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r
notation `∃₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r
theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) :
∃₀ x ∈ s, P x :=
exists.intro x (and.intro xs Px)
lemma bounded_forall_congr {A : Type} {S : set A} {P Q : A → Prop} (H : ∀₀ x∈S, P x ↔ Q x) :
(∀₀ x ∈ S, P x) = (∀₀ x ∈ S, Q x) :=
begin
apply propext,
apply forall_congr,
intros x,
apply imp_congr_right,
apply H
end
lemma bounded_exists_congr {A : Type} {S : set A} {P Q : A → Prop} (H : ∀₀ x∈S, P x ↔ Q x) :
(∃₀ x ∈ S, P x) = (∃₀ x ∈ S, Q x) :=
begin
apply propext,
apply exists_congr,
intros x,
apply and_congr_right,
apply H
end
section
open classical
lemma not_bounded_exists {A : Type} {S : set A} {P : A → Prop} :
(¬ (∃₀ x ∈ S, P x)) = (∀₀ x ∈ S, ¬ P x) :=
begin
rewrite forall_iff_not_exists,
apply propext,
apply forall_congr,
intro x,
rewrite not_and_iff_not_or_not,
rewrite imp_iff_not_or
end
lemma not_bounded_forall {A : Type} {S : set A} {P : A → Prop} :
(¬ (∀₀ x ∈ S, P x)) = (∃₀ x ∈ S, ¬ P x) :=
calc (¬ (∀₀ x ∈ S, P x)) = ¬ ¬ (∃₀ x ∈ S, ¬ P x) :
begin
rewrite not_bounded_exists,
apply (congr_arg not),
apply bounded_forall_congr,
intros x H,
rewrite not_not_iff
end
... = (∃₀ x ∈ S, ¬ P x) : by (rewrite not_not_iff)
end
/- empty set -/
definition empty : set X := λx, false
notation `∅` := empty
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, H
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
ext (take x, iff.intro
(assume xs, absurd xs (H x))
(assume xe, absurd xe !not_mem_empty))
theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end
section
open classical
theorem exists_mem_of_ne_empty {s : set X} (H : s ≠ ∅) : ∃ x, x ∈ s :=
by_contradiction (assume H', H (eq_empty_of_forall_not_mem (forall_not_of_not_exists H')))
end
theorem empty_subset (s : set X) : ∅ ⊆ s :=
take x, assume H, false.elim H
theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ :=
subset.antisymm H (empty_subset s)
theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ :=
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
lemma bounded_forall_empty_iff {P : X → Prop} :
(∀₀x∈∅, P x) ↔ true :=
iff.intro (take H, true.intro) (take H, by contradiction)
/- universal set -/
definition univ : set X := λx, true
theorem mem_univ (x : X) : x ∈ univ := trivial
theorem mem_univ_iff (x : X) : x ∈ univ ↔ true := !iff.refl
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ :=
assume H : empty = univ,
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _))
theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial
theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ :=
eq_of_subset_of_subset (subset_univ s) H
theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ :=
ext (take x, iff.intro (assume H', trivial) (assume H', H x))
/- union -/
definition union (a b : set X) : set X := λx, x ∈ a x ∈ b
notation a b := union a b
theorem mem_union_left {x : X} {a : set X} (b : set X) : x ∈ a → x ∈ a b :=
assume h, or.inl h
theorem mem_union_right {x : X} {b : set X} (a : set X) : x ∈ b → x ∈ a b :=
assume h, or.inr h
theorem mem_unionl {x : X} {a b : set X} : x ∈ a → x ∈ a b :=
assume h, or.inl h
theorem mem_unionr {x : X} {a b : set X} : x ∈ b → x ∈ a b :=
assume h, or.inr h
theorem mem_or_mem_of_mem_union {x : X} {a b : set X} (H : x ∈ a b) : x ∈ a x ∈ b := H
theorem mem_union.elim {x : X} {a b : set X} {P : Prop}
(H₁ : x ∈ a b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P :=
or.elim H₁ H₂ H₃
theorem mem_union_iff (x : X) (a b : set X) : x ∈ a b ↔ x ∈ a x ∈ b := !iff.refl
theorem mem_union_eq (x : X) (a b : set X) : x ∈ a b = (x ∈ a x ∈ b) := rfl
theorem union_self (a : set X) : a a = a :=
ext (take x, !or_self)
theorem union_empty (a : set X) : a ∅ = a :=
ext (take x, !or_false)
theorem empty_union (a : set X) : ∅ a = a :=
ext (take x, !false_or)
theorem union_comm (a b : set X) : a b = b a :=
ext (take x, or.comm)
theorem union_assoc (a b c : set X) : (a b) c = a (b c) :=
ext (take x, or.assoc)
theorem union_left_comm (s₁ s₂ s₃ : set X) : s₁ (s₂ s₃) = s₂ (s₁ s₃) :=
!left_comm union_comm union_assoc s₁ s₂ s₃
theorem union_right_comm (s₁ s₂ s₃ : set X) : (s₁ s₂) s₃ = (s₁ s₃) s₂ :=
!right_comm union_comm union_assoc s₁ s₂ s₃
theorem subset_union_left (s t : set X) : s ⊆ s t := λ x H, or.inl H
theorem subset_union_right (s t : set X) : t ⊆ s t := λ x H, or.inr H
theorem union_subset {s t r : set X} (sr : s ⊆ r) (tr : t ⊆ r) : s t ⊆ r :=
λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt)
/- intersection -/
definition inter (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b
theorem mem_inter_iff (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
theorem mem_inter {x : X} {a b : set X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b :=
and.intro Ha Hb
theorem mem_of_mem_inter_left {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ a :=
and.left H
theorem mem_of_mem_inter_right {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ b :=
and.right H
theorem inter_self (a : set X) : a ∩ a = a :=
ext (take x, !and_self)
theorem inter_empty (a : set X) : a ∩ ∅ = ∅ :=
ext (take x, !and_false)
theorem empty_inter (a : set X) : ∅ ∩ a = ∅ :=
ext (take x, !false_and)
theorem nonempty_of_inter_nonempty_right {T : Type} {s t : set T} (H : s ∩ t ≠ ∅) : t ≠ ∅ :=
suppose t = ∅,
have s ∩ t = ∅, by rewrite this; apply inter_empty,
H this
theorem nonempty_of_inter_nonempty_left {T : Type} {s t : set T} (H : s ∩ t ≠ ∅) : s ≠ ∅ :=
suppose s = ∅,
have s ∩ t = ∅, by rewrite this; apply empty_inter,
H this
theorem inter_comm (a b : set X) : a ∩ b = b ∩ a :=
ext (take x, !and.comm)
theorem inter_assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
ext (take x, !and.assoc)
theorem inter_left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
!left_comm inter_comm inter_assoc s₁ s₂ s₃
theorem inter_right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
!right_comm inter_comm inter_assoc s₁ s₂ s₃
theorem inter_univ (a : set X) : a ∩ univ = a :=
ext (take x, !and_true)
theorem univ_inter (a : set X) : univ ∩ a = a :=
ext (take x, !true_and)
theorem inter_subset_left (s t : set X) : s ∩ t ⊆ s := λ x H, and.left H
theorem inter_subset_right (s t : set X) : s ∩ t ⊆ t := λ x H, and.right H
theorem inter_subset_inter_right {s t : set X} (u : set X) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
take x, assume xsu, and.intro (H (and.left xsu)) (and.right xsu)
theorem inter_subset_inter_left {s t : set X} (u : set X) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t :=
take x, assume xus, and.intro (and.left xus) (H (and.right xus))
theorem subset_inter {s t r : set X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t :=
λ x xr, and.intro (rs xr) (rt xr)
theorem not_mem_of_mem_of_not_mem_inter_left {s t : set X} {x : X} (Hxs : x ∈ s) (Hnm : x ∉ s ∩ t) : x ∉ t :=
suppose x ∈ t,
have x ∈ s ∩ t, from and.intro Hxs this,
show false, from Hnm this
theorem not_mem_of_mem_of_not_mem_inter_right {s t : set X} {x : X} (Hxs : x ∈ t) (Hnm : x ∉ s ∩ t) : x ∉ s :=
suppose x ∈ s,
have x ∈ s ∩ t, from and.intro this Hxs,
show false, from Hnm this
/- distributivity laws -/
theorem inter_distrib_left (s t u : set X) : s ∩ (t u) = (s ∩ t) (s ∩ u) :=
ext (take x, !and.left_distrib)
theorem inter_distrib_right (s t u : set X) : (s t) ∩ u = (s ∩ u) (t ∩ u) :=
ext (take x, !and.right_distrib)
theorem union_distrib_left (s t u : set X) : s (t ∩ u) = (s t) ∩ (s u) :=
ext (take x, !or.left_distrib)
theorem union_distrib_right (s t u : set X) : (s ∩ t) u = (s u) ∩ (t u) :=
ext (take x, !or.right_distrib)
/- set-builder notation -/
-- {x : X | P}
definition set_of (P : X → Prop) : set X := P
notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r
-- {x ∈ s | P}
definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
/- insert -/
definition insert (x : X) (a : set X) : set X := {y : X | y = x y ∈ a}
-- '{x, y, z}
notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a
theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a :=
take y, assume ys, or.inr ys
theorem mem_insert (x : X) (s : set X) : x ∈ insert x s :=
or.inl rfl
theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s :=
assume h, or.inr h
theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a x ∈ s :=
assume h, h
theorem mem_of_mem_insert_of_ne {x a : X} {s : set X} (xin : x ∈ insert a s) : x ≠ a → x ∈ s :=
or_resolve_right (eq_or_mem_of_mem_insert xin)
theorem mem_insert_eq (x a : X) (s : set X) : x ∈ insert a s = (x = a x ∈ s) :=
propext (iff.intro !eq_or_mem_of_mem_insert
(or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem))
theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s :=
ext (λ x, eq.substr (mem_insert_eq x a s)
(or_iff_right_of_imp (λH1, eq.substr H1 H)))
theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) :=
ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm])
-- useful in proofs by induction
theorem forall_of_forall_insert {P : X → Prop} {a : X} {s : set X}
(H : ∀ x, x ∈ insert a s → P x) :
∀ x, x ∈ s → P x :=
λ x xs, H x (!mem_insert_of_mem xs)
lemma bounded_forall_insert_iff {P : X → Prop} {a : X} {s : set X} :
(∀₀x ∈ insert a s, P x) ↔ P a ∧ (∀₀x ∈ s, P x) :=
begin
apply iff.intro, all_goals (intro H),
{ apply and.intro,
{ apply H, apply mem_insert },
{ intro x Hx, apply H, apply mem_insert_of_mem, assumption } },
{ intro x Hx, cases Hx with eq Hx,
{ cases eq, apply (and.elim_left H) },
{ apply (and.elim_right H), assumption } }
end
/- singleton -/
theorem mem_singleton_iff (a b : X) : a ∈ '{b} ↔ a = b :=
iff.intro
(assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f))
(assume aeqb, or.inl aeqb)
theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert
theorem eq_of_mem_singleton {x y : X} (h : x ∈ '{y}) : x = y :=
or.elim (eq_or_mem_of_mem_insert h)
(suppose x = y, this)
(suppose x ∈ ∅, absurd this !not_mem_empty)
theorem mem_singleton_of_eq {x y : X} (H : x = y) : x ∈ '{y} :=
eq.symm H ▸ mem_singleton y
theorem insert_eq (x : X) (s : set X) : insert x s = '{x} s :=
ext (take y, iff.intro
(suppose y ∈ insert x s,
or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this))
(suppose y ∈ '{x} s,
or.elim this
(suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this))
(suppose y ∈ s, or.inr this)))
theorem pair_eq_singleton (a : X) : '{a, a} = '{a} :=
by rewrite [insert_eq_of_mem !mem_singleton]
theorem singleton_ne_empty (a : X) : '{a} ≠ ∅ :=
begin
intro H,
apply not_mem_empty a,
rewrite -H,
apply mem_insert
end
/- separation -/
theorem mem_sep {s : set X} {P : X → Prop} {x : X} (xs : x ∈ s) (Px : P x) : x ∈ {x ∈ s | P x} :=
and.intro xs Px
theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
ext (take x, iff.intro
(suppose x ∈ s, and.intro (ssubt this) this)
(suppose x ∈ {x ∈ t | x ∈ s}, and.right this))
theorem mem_sep_iff {s : set X} {P : X → Prop} {x : X} : x ∈ {x ∈ s | P x} ↔ x ∈ s ∧ P x :=
!iff.refl
theorem sep_subset (s : set X) (P : X → Prop) : {x ∈ s | P x} ⊆ s :=
take x, assume H, and.left H
theorem forall_not_of_sep_empty {s : set X} {P : X → Prop} (H : {x ∈ s | P x} = ∅) : ∀₀ x ∈ s, ¬ P x :=
take x, suppose x ∈ s, suppose P x,
have x ∈ {x ∈ s | P x}, from and.intro `x ∈ s` this,
show false, from ne_empty_of_mem this H
/- complement -/
definition compl (s : set X) : set X := {x | x ∉ s}
prefix `-` := compl
theorem mem_compl {s : set X} {x : X} (H : x ∉ s) : x ∈ -s := H
theorem not_mem_of_mem_compl {s : set X} {x : X} (H : x ∈ -s) : x ∉ s := H
theorem mem_compl_iff (s : set X) (x : X) : x ∈ -s ↔ x ∉ s := !iff.refl
theorem inter_compl_self (s : set X) : s ∩ -s = ∅ :=
ext (take x, !and_not_self_iff)
theorem compl_inter_self (s : set X) : -s ∩ s = ∅ :=
ext (take x, !not_and_self_iff)
/- some classical identities -/
section
open classical
theorem compl_empty : -(∅ : set X) = univ :=
ext (take x, iff.intro (assume H, trivial) (assume H, not_false))
theorem compl_union (s t : set X) : -(s t) = -s ∩ -t :=
ext (take x, !not_or_iff_not_and_not)
theorem compl_compl (s : set X) : -(-s) = s :=
ext (take x, !not_not_iff)
theorem compl_inter (s t : set X) : -(s ∩ t) = -s -t :=
ext (take x, !not_and_iff_not_or_not)
theorem compl_univ : -(univ : set X) = ∅ :=
by rewrite [-compl_empty, compl_compl]
theorem union_eq_compl_compl_inter_compl (s t : set X) : s t = -(-s ∩ -t) :=
ext (take x, !or_iff_not_and_not)
theorem inter_eq_compl_compl_union_compl (s t : set X) : s ∩ t = -(-s -t) :=
ext (take x, !and_iff_not_or_not)
theorem union_compl_self (s : set X) : s -s = univ :=
ext (take x, !or_not_self_iff)
theorem compl_union_self (s : set X) : -s s = univ :=
ext (take x, !not_or_self_iff)
theorem compl_comp_compl :
#function compl ∘ compl = @id (set X) :=
funext (λ s, compl_compl s)
end
/- set difference -/
definition diff (s t : set X) : set X := {x ∈ s | x ∉ t}
infix `\`:70 := diff
theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
and.intro H1 H2
theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s :=
and.left H
theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t :=
and.right H
theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl
theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl
theorem diff_eq (s t : set X) : s \ t = s ∩ -t := rfl
theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s (t \ s) = t :=
ext (take x, iff.intro
(assume H1 : x ∈ s (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2))
(assume H1 : x ∈ t,
decidable.by_cases
(suppose x ∈ s, or.inl this)
(suppose x ∉ s, or.inr (and.intro H1 this))))
theorem diff_subset (s t : set X) : s \ t ⊆ s := inter_subset_left s _
theorem compl_eq_univ_diff (s : set X) : -s = univ \ s :=
ext (take x, iff.intro (assume H, and.intro trivial H) (assume H, and.right H))
/- powerset -/
definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s}
prefix `𝒫`:100 := powerset
theorem mem_powerset {x s : set X} (H : x ⊆ s) : x ∈ 𝒫 s := H
theorem subset_of_mem_powerset {x s : set X} (H : x ∈ 𝒫 s) : x ⊆ s := H
theorem mem_powerset_iff (x s : set X) : x ∈ 𝒫 s ↔ x ⊆ s := !iff.refl
/- function image -/
section image
variables {Y Z : Type}
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
∀₀ x ∈ a, f1 x = f2 x
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
infix ` ' ` := image
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
f1 ' a = f2 ' a :=
ext (take y, iff.intro
(assume H2,
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
exists.intro x (and.intro H4 H5))
(assume H2,
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
have H4 : x ∈ a, from and.left H3,
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
exists.intro x (and.intro H4 H5)))
theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y}
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f ' a :=
exists.intro x (and.intro H1 H2)
theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a :=
mem_image H rfl
lemma image_comp (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) ' a = f ' (g ' a) :=
ext (take z,
iff.intro
(assume Hz : z ∈ (f ∘ g) ' a,
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
have Hgx : g x ∈ g ' a, from mem_image Hx₁ rfl,
show z ∈ f ' (g ' a), from mem_image Hgx Hx₂)
(assume Hz : z ∈ f ' (g 'a),
obtain y (Hy₁ : y ∈ g ' a) (Hy₂ : f y = z), from Hz,
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
show z ∈ (f ∘ g) ' a, from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f ' a ⊆ f ' b :=
take y, assume Hy : y ∈ f ' a,
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
mem_image (H Hx₁) Hx₂
theorem image_union (f : X → Y) (s t : set X) :
image f (s t) = image f s image f t :=
ext (take y, iff.intro
(assume H : y ∈ image f (s t),
obtain x [(xst : x ∈ s t) (fxy : f x = y)], from H,
or.elim xst
(assume xs, or.inl (mem_image xs fxy))
(assume xt, or.inr (mem_image xt fxy)))
(assume H : y ∈ image f s image f t,
or.elim H
(assume yifs : y ∈ image f s,
obtain x [(xs : x ∈ s) (fxy : f x = y)], from yifs,
mem_image (or.inl xs) fxy)
(assume yift : y ∈ image f t,
obtain x [(xt : x ∈ t) (fxy : f x = y)], from yift,
mem_image (or.inr xt) fxy)))
theorem image_empty (f : X → Y) : image f ∅ = ∅ :=
eq_empty_of_forall_not_mem
(take y, suppose y ∈ image f ∅,
obtain x [(H : x ∈ empty) H'], from this,
H)
theorem mem_image_compl (t : set X) (S : set (set X)) :
t ∈ compl ' S ↔ -t ∈ S :=
iff.intro
(suppose t ∈ compl ' S,
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
show -t ∈ S, by rewrite [-Ht, compl_compl]; exact Ht')
(suppose -t ∈ S,
have -(-t) ∈ compl 'S, from mem_image_of_mem compl this,
show t ∈ compl 'S, from compl_compl t ▸ this)
theorem image_id (s : set X) : id ' s = s :=
ext (take x, iff.intro
(suppose x ∈ id ' s,
obtain x' [(Hx' : x' ∈ s) (x'eq : x' = x)], from this,
show x ∈ s, by rewrite [-x'eq]; apply Hx')
(suppose x ∈ s, mem_image_of_mem id this))
theorem compl_compl_image (S : set (set X)) :
compl ' (compl ' S) = S :=
by rewrite [-image_comp, compl_comp_compl, image_id]
lemma bounded_forall_image_of_bounded_forall {f : X → Y} {S : set X} {P : Y → Prop}
(H : ∀₀ x ∈ S, P (f x)) : ∀₀ y ∈ f ' S, P y :=
begin
intro x' Hx;
cases Hx with x Hx;
cases Hx with Hx eq;
rewrite (eq⁻¹);
apply H;
assumption
end
lemma bounded_forall_image_iff {f : X → Y} {S : set X} {P : Y → Prop} :
(∀₀ y ∈ f ' S, P y) ↔ (∀₀ x ∈ S, P (f x)) :=
iff.intro (take H x Hx, H _ (!mem_image_of_mem `x ∈ S`)) bounded_forall_image_of_bounded_forall
lemma image_insert_eq {f : X → Y} {a : X} {S : set X} :
f ' insert a S = insert (f a) (f ' S) :=
begin
apply set.ext,
intro x, apply iff.intro, all_goals (intros H),
{ cases H with y Hy, cases Hy with Hy eq, rewrite (eq⁻¹), cases Hy with y_eq,
{ rewrite y_eq, apply mem_insert },
{ apply mem_insert_of_mem, apply mem_image_of_mem, assumption } },
{ cases H with eq Hx,
{ rewrite eq, apply mem_image_of_mem, apply mem_insert },
{ cases Hx with y Hy, cases Hy with Hy eq,
rewrite (eq⁻¹), apply mem_image_of_mem, apply mem_insert_of_mem, assumption } }
end
end image
/- collections of disjoint sets -/
definition disjoint_sets (S : set (set X)) : Prop := ∀ a b, a ∈ S → b ∈ S → a ≠ b → a ∩ b = ∅
theorem disjoint_sets_empty : disjoint_sets (∅ : set (set X)) :=
take a b, assume H, !not.elim !not_mem_empty H
theorem disjoint_sets_union {s t : set (set X)} (Hs : disjoint_sets s) (Ht : disjoint_sets t)
(H : ∀ x y, x ∈ s ∧ y ∈ t → x ∩ y = ∅) :
disjoint_sets (s t) :=
take a b, assume Ha Hb Hneq, or.elim Ha
(assume H1, or.elim Hb
(suppose b ∈ s, (Hs a b) H1 this Hneq)
(suppose b ∈ t, (H a b) (and.intro H1 this)))
(assume H2, or.elim Hb
(suppose b ∈ s, !inter_comm ▸ ((H b a) (and.intro this H2)))
(suppose b ∈ t, (Ht a b) H2 this Hneq))
theorem disjoint_sets_singleton (s : set (set X)) : disjoint_sets '{s} :=
take a b, assume Ha Hb Hneq,
absurd (eq.trans ((iff.elim_left !mem_singleton_iff) Ha) ((iff.elim_left !mem_singleton_iff) Hb)⁻¹)
Hneq
/- large unions -/
section large_unions
variables {I : Type}
variable a : set I
variable b : I → set X
variable C : set (set X)
definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c}
definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c}
prefix `⋃₀`:110 := sUnion
prefix `⋂₀`:110 := sInter
definition Union : set X := {x : X | ∃i, x ∈ b i}
definition Inter : set X := {x : X | ∀i, x ∈ b i}
notation `` binders `, ` r:(scoped f, Union f) := r
notation `⋂` binders `, ` r:(scoped f, Inter f) := r
definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i}
definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i}
notation `` binders ` ∈ ` s `, ` r:(scoped f, bUnion s f) := r
notation `⋂` binders ` ∈ ` s `, ` r:(scoped f, bInter s f) := r
end large_unions
-- sUnion and sInter: a collection (set) of sets
theorem mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∈ t) (Ht : t ∈ S) :
x ∈ ⋃₀ S :=
exists.intro t (and.intro Ht Hx)
theorem not_mem_of_not_mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∉ ⋃₀ S) (Ht : t ∈ S) :
x ∉ t :=
suppose x ∈ t,
have x ∈ ⋃₀ S, from mem_sUnion this Ht,
show false, from Hx this
theorem mem_sInter {x : X} {t : set X} {S : set (set X)} (H : ∀₀ t ∈ S, x ∈ t) :
x ∈ ⋂₀ S :=
H
theorem sInter_subset_of_mem {S : set (set X)} {t : set X} (tS : t ∈ S) :
(⋂₀ S) ⊆ t :=
take x, assume H, H t tS
theorem subset_sUnion_of_mem {S : set (set X)} {t : set X} (tS : t ∈ S) :
t ⊆ (⋃₀ S) :=
take x, assume H, exists.intro t (and.intro tS H)
theorem sUnion_empty : ⋃₀ ∅ = (∅ : set X) :=
eq_empty_of_forall_not_mem
(take x, suppose x ∈ sUnion ∅,
obtain t [(Ht : t ∈ ∅) Ht'], from this,
show false, from Ht)
theorem sInter_empty : ⋂₀ ∅ = (univ : set X) :=
eq_univ_of_forall (λ x s H, false.elim H)
theorem sUnion_singleton (s : set X) : ⋃₀ '{s} = s :=
ext (take x, iff.intro
(suppose x ∈ sUnion '{s},
obtain u [(Hu : u ∈ '{s}) (xu : x ∈ u)], from this,
have u = s, from eq_of_mem_singleton Hu,
show x ∈ s, by rewrite -this; apply xu)
(suppose x ∈ s,
mem_sUnion this (mem_singleton s)))
theorem sInter_singleton (s : set X) : ⋂₀ '{s} = s :=
ext (take x, iff.intro
(suppose x ∈ ⋂₀ '{s}, show x ∈ s, from this (mem_singleton s))
(suppose x ∈ s, take u, suppose u ∈ '{s},
show x ∈ u, by+ rewrite [eq_of_mem_singleton this]; assumption))
theorem sUnion_union (S T : set (set X)) : ⋃₀ (S T) = ⋃₀ S ⋃₀ T :=
ext (take x, iff.intro
(suppose x ∈ sUnion (S T),
obtain u [(Hu : u ∈ S T) (xu : x ∈ u)], from this,
or.elim Hu
(assume uS, or.inl (mem_sUnion xu uS))
(assume uT, or.inr (mem_sUnion xu uT)))
(suppose x ∈ sUnion S sUnion T,
or.elim this
(suppose x ∈ sUnion S,
obtain u [(uS : u ∈ S) (xu : x ∈ u)], from this,
mem_sUnion xu (or.inl uS))
(suppose x ∈ sUnion T,
obtain u [(uT : u ∈ T) (xu : x ∈ u)], from this,
mem_sUnion xu (or.inr uT))))
theorem sInter_union (S T : set (set X)) : ⋂₀ (S T) = ⋂₀ S ∩ ⋂₀ T :=
ext (take x, iff.intro
(assume H : x ∈ ⋂₀ (S T),
and.intro (λ u uS, H (or.inl uS)) (λ u uT, H (or.inr uT)))
(assume H : x ∈ ⋂₀ S ∩ ⋂₀ T,
take u, suppose u ∈ S T, or.elim this (λ uS, and.left H u uS) (λ uT, and.right H u uT)))
theorem sUnion_insert (s : set X) (T : set (set X)) :
⋃₀ (insert s T) = s ⋃₀ T :=
by rewrite [insert_eq, sUnion_union, sUnion_singleton]
theorem sInter_insert (s : set X) (T : set (set X)) :
⋂₀ (insert s T) = s ∩ ⋂₀ T :=
by rewrite [insert_eq, sInter_union, sInter_singleton]
theorem compl_sUnion (S : set (set X)) :
- ⋃₀ S = ⋂₀ (compl ' S) :=
ext (take x, iff.intro
(assume H : x ∈ -(⋃₀ S),
take t, suppose t ∈ compl ' S,
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
have x ∈ -t', from suppose x ∈ t', H (mem_sUnion this Ht'),
show x ∈ t, by rewrite -Ht; apply this)
(assume H : x ∈ ⋂₀ (compl ' S),
suppose x ∈ ⋃₀ S,
obtain t [(tS : t ∈ S) (xt : x ∈ t)], from this,
have -t ∈ compl ' S, from mem_image_of_mem compl tS,
have x ∈ -t, from H this,
show false, proof this xt qed))
theorem sUnion_eq_compl_sInter_compl (S : set (set X)) :
⋃₀ S = - ⋂₀ (compl ' S) :=
by rewrite [-compl_compl, compl_sUnion]
theorem compl_sInter (S : set (set X)) :
- ⋂₀ S = ⋃₀ (compl ' S) :=
by rewrite [sUnion_eq_compl_sInter_compl, compl_compl_image]
theorem sInter_eq_comp_sUnion_compl (S : set (set X)) :
⋂₀ S = -(⋃₀ (compl ' S)) :=
by rewrite [-compl_compl, compl_sInter]
theorem inter_sUnion_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : s ∩ t ≠ ∅) :
s ∩ ⋃₀ S ≠ ∅ :=
obtain x Hsx Htx, from exists_mem_of_ne_empty Hne,
have x ∈ ⋃₀ S, from mem_sUnion Htx Hs,
ne_empty_of_mem (mem_inter Hsx this)
theorem sUnion_inter_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : t ∩ s ≠ ∅) :
(⋃₀ S) ∩ s ≠ ∅ :=
obtain x Htx Hsx, from exists_mem_of_ne_empty Hne,
have x ∈ ⋃₀ S, from mem_sUnion Htx Hs,
ne_empty_of_mem (mem_inter this Hsx)
-- Union and Inter: a family of sets indexed by a type
theorem Union_subset {I : Type} {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : ( i, b i) ⊆ c :=
take x,
suppose x ∈ Union b,
obtain i (Hi : x ∈ b i), from this,
show x ∈ c, from H i Hi
theorem subset_Inter {I : Type} {b : I → set X} {c : set X} (H : ∀ i, c ⊆ b i) : c ⊆ ⋂ i, b i :=
λ x cx i, H i cx
theorem Union_eq_sUnion_image {X I : Type} (s : I → set X) : ( i, s i) = ⋃₀ (s ' univ) :=
ext (take x, iff.intro
(suppose x ∈ Union s,
obtain i (Hi : x ∈ s i), from this,
mem_sUnion Hi (mem_image_of_mem s trivial))
(suppose x ∈ sUnion (s ' univ),
obtain t [(Ht : t ∈ s ' univ) (Hx : x ∈ t)], from this,
obtain i [univi (Hi : s i = t)], from Ht,
exists.intro i (show x ∈ s i, by rewrite Hi; apply Hx)))
theorem Inter_eq_sInter_image {X I : Type} (s : I → set X) : (⋂ i, s i) = ⋂₀ (s ' univ) :=
ext (take x, iff.intro
(assume H : x ∈ Inter s,
take t,
suppose t ∈ s 'univ,
obtain i [univi (Hi : s i = t)], from this,
show x ∈ t, by rewrite -Hi; exact H i)
(assume H : x ∈ ⋂₀ (s ' univ),
take i,
have s i ∈ s ' univ, from mem_image_of_mem s trivial,
show x ∈ s i, from H this))
theorem compl_Union {X I : Type} (s : I → set X) : - ( i, s i) = (⋂ i, - s i) :=
by rewrite [Union_eq_sUnion_image, compl_sUnion, -image_comp, -Inter_eq_sInter_image]
theorem compl_Inter {X I : Type} (s : I → set X) : -(⋂ i, s i) = ( i, - s i) :=
by rewrite [Inter_eq_sInter_image, compl_sInter, -image_comp, -Union_eq_sUnion_image]
theorem Union_eq_comp_Inter_comp {X I : Type} (s : I → set X) : ( i, s i) = - (⋂ i, - s i) :=
by rewrite [-compl_compl, compl_Union]
theorem Inter_eq_comp_Union_comp {X I : Type} (s : I → set X) : (⋂ i, s i) = - ( i, -s i) :=
by rewrite [-compl_compl, compl_Inter]
lemma inter_distrib_Union_left {X I : Type} (s : I → set X) (a : set X) :
a ∩ ( i, s i) = i, a ∩ s i :=
ext (take x, iff.intro
(assume H, obtain i Hi, from and.elim_right H,
have x ∈ a ∩ s i, from and.intro (and.elim_left H) Hi,
show _, from exists.intro i this)
(assume H, obtain i [xa xsi], from H,
show _, from and.intro xa (exists.intro i xsi)))
section
open classical
lemma union_distrib_Inter_left {X I : Type} (s : I → set X) (a : set X) :
a (⋂ i, s i) = ⋂ i, a s i :=
ext (take x, iff.intro
(assume H, or.elim H
(assume H1, take i, or.inl H1)
(assume H1, take i, or.inr (H1 i)))
(assume H,
by_cases
(suppose x ∈ a, or.inl this)
(suppose x ∉ a, or.inr (take i, or.resolve_left (H i) this))))
end
-- these are useful for turning binary union / intersection into countable ones
definition bin_ext (s t : set X) (n : ) : set X :=
nat.cases_on n s (λ m, t)
lemma Union_bin_ext (s t : set X) : ( i, bin_ext s t i) = s t :=
ext (take x, iff.intro
(assume H,
obtain i (Hi : x ∈ (bin_ext s t) i), from H,
by cases i; apply or.inl Hi; apply or.inr Hi)
(assume H,
or.elim H
(suppose x ∈ s, exists.intro 0 this)
(suppose x ∈ t, exists.intro 1 this)))
lemma Inter_bin_ext (s t : set X) : (⋂ i, bin_ext s t i) = s ∩ t :=
ext (take x, iff.intro
(assume H, and.intro (H 0) (H 1))
(assume H, by intro i; cases i;
apply and.elim_left H; apply and.elim_right H))
-- bUnion and bInter: a family of sets indexed by a set ("b" is for bounded)
variable {Y : Type}
theorem mem_bUnion {s : set X} {f : X → set Y} {x : X} {y : Y}
(xs : x ∈ s) (yfx : y ∈ f x) :
y ∈ x ∈ s, f x :=
exists.intro x (and.intro xs yfx)
theorem mem_bInter {s : set X} {f : X → set Y} {y : Y} (H : ∀₀ x ∈ s, y ∈ f x) :
y ∈ ⋂ x ∈ s, f x :=
H
theorem bUnion_subset {s : set X} {t : set Y} {f : X → set Y} (H : ∀₀ x ∈ s, f x ⊆ t) :
( x ∈ s, f x) ⊆ t :=
take y, assume Hy,
obtain x [xs yfx], from Hy,
show y ∈ t, from H xs yfx
theorem subset_bInter {s : set X} {t : set Y} {f : X → set Y} (H : ∀₀ x ∈ s, t ⊆ f x) :
t ⊆ ⋂ x ∈ s, f x :=
take y, assume yt, take x, assume xs, H xs yt
theorem subset_bUnion_of_mem {s : set X} {f : X → set Y} {x : X} (xs : x ∈ s) :
f x ⊆ x ∈ s, f x :=
take y, assume Hy, mem_bUnion xs Hy
theorem bInter_subset_of_mem {s : set X} {f : X → set Y} {x : X} (xs : x ∈ s) :
(⋂ x ∈ s, f x) ⊆ f x :=
take y, assume Hy, Hy x xs
theorem bInter_empty (f : X → set Y) : (⋂ x ∈ (∅ : set X), f x) = univ :=
eq_univ_of_forall (take y x xine, absurd xine !not_mem_empty)
theorem bInter_singleton (a : X) (f : X → set Y) : (⋂ x ∈ '{a}, f x) = f a :=
ext (take y, iff.intro
(assume H, H a !mem_singleton)
(assume H, λ x xa, by rewrite [eq_of_mem_singleton xa]; apply H))
theorem bInter_union (s t : set X) (f : X → set Y) :
(⋂ x ∈ s t, f x) = (⋂ x ∈ s, f x) ∩ (⋂ x ∈ t, f x) :=
ext (take y, iff.intro
(assume H, and.intro (λ x xs, H x (or.inl xs)) (λ x xt, H x (or.inr xt)))
(assume H, λ x xst, or.elim (xst) (λ xs, and.left H x xs) (λ xt, and.right H x xt)))
theorem bInter_insert (a : X) (s : set X) (f : X → set Y) :
(⋂ x ∈ insert a s, f x) = f a ∩ (⋂ x ∈ s, f x) :=
by rewrite [insert_eq, bInter_union, bInter_singleton]
theorem bInter_pair (a b : X) (f : X → set Y) :
(⋂ x ∈ '{a, b}, f x) = f a ∩ f b :=
by rewrite [*bInter_insert, bInter_empty, inter_univ]
theorem bUnion_empty (f : X → set Y) : ( x ∈ (∅ : set X), f x) = ∅ :=
eq_empty_of_forall_not_mem (λ y H, obtain x [xine yfx], from H,
!not_mem_empty xine)
theorem bUnion_singleton (a : X) (f : X → set Y) : ( x ∈ '{a}, f x) = f a :=
ext (take y, iff.intro
(assume H, obtain x [xina yfx], from H,
show y ∈ f a, by rewrite [-eq_of_mem_singleton xina]; exact yfx)
(assume H, exists.intro a (and.intro !mem_singleton H)))
theorem bUnion_union (s t : set X) (f : X → set Y) :
( x ∈ s t, f x) = ( x ∈ s, f x) ( x ∈ t, f x) :=
ext (take y, iff.intro
(assume H, obtain x [xst yfx], from H,
or.elim xst
(λ xs, or.inl (exists.intro x (and.intro xs yfx)))
(λ xt, or.inr (exists.intro x (and.intro xt yfx))))
(assume H, or.elim H
(assume H1, obtain x [xs yfx], from H1,
exists.intro x (and.intro (or.inl xs) yfx))
(assume H1, obtain x [xt yfx], from H1,
exists.intro x (and.intro (or.inr xt) yfx))))
theorem bUnion_insert (a : X) (s : set X) (f : X → set Y) :
( x ∈ insert a s, f x) = f a ( x ∈ s, f x) :=
by rewrite [insert_eq, bUnion_union, bUnion_singleton]
theorem bUnion_pair (a b : X) (f : X → set Y) :
( x ∈ '{a, b}, f x) = f a f b :=
by rewrite [*bUnion_insert, bUnion_empty, union_empty]
end set