lean2/hott/choice.hlean

91 lines
3.6 KiB
Text

import .types.trunc
open eq bool equiv sigma sigma.ops trunc is_trunc pi
section
universe variable u
-- 3.8.1. The axiom of choice.
definition AC := Π (X : Type.{u}) (A : X -> Type.{u}) (P : Π x, A x -> Type.{u}),
is_hset X -> (Π x, is_hset (A x)) -> (Π x a, is_hprop (P x a)) ->
(Π x, ∥ Σ a, P x a ∥) -> ∥ Σ f, Π x, P x (f x) ∥
-- 3.8.3. Corresponds to the assertion that "the cartesian product of a family of nonempty sets is nonempty".
definition AC_cart := Π (X : Type.{u}) (A : X -> Type.{u}),
is_hset X -> (Π x, is_hset (A x)) -> (Π x, ∥ A x ∥) -> ∥ Π x, A x ∥
-- A slight variant of AC with a modified (equivalent) codomain.
definition AC' := Π (X : Type.{u}) (A : X -> Type.{u}) (P : Π x, A x -> Type.{u}),
is_hset X -> (Π x, is_hset (A x)) -> (Π x a, is_hprop (P x a))
-> (Π x, ∥ Σ a, P x a ∥) -> ∥ Π x, Σ a : A x, P x a ∥
-- The equivalence of AC and AC' follows from the equivalence of their codomains.
definition AC_equiv_AC' : AC.{u} ≃ AC'.{u} :=
@equiv_of_is_hprop _ _ !is_trunc_pi !is_trunc_pi
(λ H X A P HX HA HP HI, trunc_functor _
(to_fun !sigma_pi_equiv_pi_sigma) (H X A P HX HA HP HI))
(λ H X A P HX HA HP HI, trunc_functor _
(to_inv !sigma_pi_equiv_pi_sigma) (H X A P HX HA HP HI))
-- AC_cart can be derived from AC' by setting P := λ _ _ , unit.
definition AC_cart_of_AC' : AC'.{u} -> AC_cart.{u} :=
λ H X A HX HA HI, trunc_functor _ (λ H0 x, (H0 x).1)
(H X A (λ x a, lift.{0 u} unit) HX HA (λ x a, !is_trunc_lift)
(λ x, trunc_functor _ (λ a, ⟨a, lift.up.{0 u} unit.star⟩) (HI x)))
-- And the converse, by setting A := λ x, Σ a, P x a.
definition AC'_of_AC_cart : AC_cart.{u} -> AC'.{u} :=
by intro H X A P HX HA HP HI;
apply H X (λ x, Σ a, P x a) HX (λ x, !is_trunc_sigma) HI
-- Which is enough to show AC' ≃ AC_cart, since both are hprops.
definition AC'_equiv_AC_cart : AC'.{u} ≃ AC_cart.{u} :=
@equiv_of_is_hprop _ _ !is_trunc_pi !is_trunc_pi AC'_to_AC_cart.{u} AC_cart_to_AC'.{u}
-- 3.8.2. AC ≃ AC_cart follows by transitivity.
definition AC_equiv_AC_cart : AC.{u} ≃ AC_cart.{u} :=
equiv.trans AC_equiv_AC' AC'_equiv_AC_cart
definition X : Type.{1} := Σ A : Type.{0}, ∥ A = bool ∥
definition x0 : X := ⟨bool, merely.intro _ rfl⟩
definition Y : X -> Type.{1} := λ x, x0 = x
definition not_is_hprop_bool_eq_bool : ¬ is_hprop (bool = bool) :=
λ H, eq_bnot_ne_idp !is_hprop.elim
definition not_is_hset_X : ¬ is_hset X :=
begin
intro H, apply not_is_hprop_bool_eq_bool,
apply @is_trunc_equiv_closed (x0 = x0),
apply equiv.symm !equiv_subtype
end
definition is_hset_bool : is_hset bool :=
@is_hset_of_decidable_eq _ bool.has_decidable_eq
definition is_hset_x1 (x : X) : is_hset x.1 :=
by cases x; induction a_1; apply a_1⁻¹ ▸ is_hset_bool
definition is_hset_Yx (x : X) : is_hset (Y x) :=
begin
apply @is_trunc_equiv_closed _ _ _ !equiv_subtype,
apply @is_trunc_equiv_closed _ _ _ (equiv.symm !eq_equiv_equiv),
apply is_trunc_equiv; repeat (apply is_hset_x1)
end
definition trunc_Yx (x : X) : ∥ Y x ∥ :=
begin
cases x, induction a_1, apply merely.intro,
apply to_fun !equiv_subtype, rewrite a_1
end
-- 3.8.5. There exists a type X and a family Y : X → U such that each Y(x) is a set, but such that (3.8.3) is false.
definition index_must_be_hset : Σ (X : Type.{1}) (Y : X -> Type.{1})
(HA : Π x : X, is_hset (Y x)), ¬ ((Π x : X, ∥ Y x ∥) -> ∥ Π x : X, Y x ∥) :=
⟨X, Y, is_hset_Yx, λ H, trunc.rec_on (H trunc_Yx)
(λ H0, not_is_hset_X (@is_trunc_of_is_contr _ _ (is_contr.mk x0 H0)))⟩
end