lean2/library/theories/number_theory/primes.lean

180 lines
7.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Prime numbers
-/
import data.nat logic.identities
open bool
namespace nat
open decidable
definition prime [reducible] (p : nat) := p ≥ 2 ∧ ∀ m, m p → m = 1 m = p
definition prime_ext (p : nat) := p ≥ 2 ∧ ∀ m, m ≤ p → m p → m = 1 m = p
local attribute prime_ext [reducible]
lemma prime_ext_iff_prime (p : nat) : prime_ext p ↔ prime p :=
iff.intro
begin
intro h, cases h with h₁ h₂, constructor, assumption,
intro m d, exact h₂ m (le_of_dvd (lt_of_succ_le (le_of_succ_le h₁)) d) d
end
begin
intro h, cases h with h₁ h₂, constructor, assumption,
intro m l d, exact h₂ m d
end
definition decidable_prime [instance] (p : nat) : decidable (prime p) :=
decidable_of_decidable_of_iff _ (prime_ext_iff_prime p)
lemma ge_two_of_prime {p : nat} : prime p → p ≥ 2 :=
assume h, obtain h₁ h₂, from h, h₁
lemma not_prime_zero : ¬ prime 0 :=
λ h, absurd (ge_two_of_prime h) dec_trivial
lemma not_prime_one : ¬ prime 1 :=
λ h, absurd (ge_two_of_prime h) dec_trivial
lemma prime_two : prime 2 :=
dec_trivial
lemma prime_three : prime 3 :=
dec_trivial
lemma pred_prime_pos {p : nat} : prime p → pred p > 0 :=
assume h,
have h₁ : p ≥ 2, from ge_two_of_prime h,
lt_of_succ_le (pred_le_pred h₁)
lemma succ_pred_prime {p : nat} : prime p → succ (pred p) = p :=
assume h, succ_pred_of_pos (lt_of_succ_le (le_of_succ_le (ge_two_of_prime h)))
lemma divisor_of_prime {p m : nat} : prime p → m p → m = 1 m = p :=
assume h d, obtain h₁ h₂, from h, h₂ m d
lemma gt_one_of_pos_of_prime_dvd {i p : nat} : prime p → 0 < i → i mod p = 0 → 1 < i :=
assume ipp pos h,
have h₁ : p i, from dvd_of_mod_eq_zero h,
have h₂ : p ≥ 2, from ge_two_of_prime ipp,
have h₃ : p ≤ i, from le_of_dvd pos h₁,
lt_of_succ_le (le.trans h₂ h₃)
theorem has_divisor_of_not_prime {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≠ 1 ∧ m ≠ n :=
assume h₁ h₂,
have h₃ : ¬ prime_ext n, from iff.mp' (not_iff_not_of_iff !prime_ext_iff_prime) h₂,
have h₄ : ¬ n ≥ 2 ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from iff.mp !not_and_iff_not_or_not h₃,
have h₅ : ¬ (∀ m, m ≤ n → m n → m = 1 m = n), from or_resolve_right h₄ (not_not_intro h₁),
have h₆ : ¬ (∀ m, m < succ n → m n → m = 1 m = n), from
assume h, absurd (λ m hl hd, h m (lt_succ_of_le hl) hd) h₅,
have h₇ : ∃ m, m < succ n ∧ ¬(m n → m = 1 m = n), from bex_not_of_not_ball h₆,
obtain m hlt (h₈ : ¬(m n → m = 1 m = n)), from h₇,
obtain (h₈ : m n) (h₉ : ¬ (m = 1 m = n)), from iff.mp !not_implies_iff_and_not h₈,
have h₁₀ : ¬ m = 1 ∧ ¬ m = n, from iff.mp !not_or_iff_not_and_not h₉,
exists.intro m (and.intro h₈ h₁₀)
theorem has_divisor_of_not_prime2 {n : nat} : n ≥ 2 → ¬ prime n → ∃ m, m n ∧ m ≥ 2 ∧ m < n :=
assume h₁ h₂,
have n_ne_0 : n ≠ 0, from assume h, begin subst n, exact absurd h₁ dec_trivial end,
obtain m m_dvd_n m_ne_1 m_ne_n, from has_divisor_of_not_prime h₁ h₂,
assert m_ne_0 : m ≠ 0, from assume h, begin subst m, exact absurd (eq_zero_of_zero_dvd m_dvd_n) n_ne_0 end,
begin
existsi m, split, assumption,
split,
{cases m with m, exact absurd rfl m_ne_0, cases m with m, exact absurd rfl m_ne_1, exact succ_le_succ (succ_le_succ (zero_le _))},
{have m_le_n : m ≤ n, from le_of_dvd (pos_of_ne_zero n_ne_0) m_dvd_n,
exact lt_of_le_and_ne m_le_n m_ne_n}
end
theorem has_prime_divisor {n : nat} : n ≥ 2 → ∃ p, prime p ∧ p n :=
nat.strong_induction_on n
(take n,
assume ih : ∀ m, m < n → m ≥ 2 → ∃ p, prime p ∧ p m,
assume n_ge_2 : n ≥ 2,
by_cases
(λ h : prime n, exists.intro n (and.intro h (dvd.refl n)))
(λ h : ¬ prime n,
obtain m m_dvd_n m_ge_2 m_lt_n, from has_divisor_of_not_prime2 n_ge_2 h,
obtain p (hp : prime p) (p_dvd_m : p m), from ih m m_lt_n m_ge_2,
have p_dvd_n : p n, from dvd.trans p_dvd_m m_dvd_n,
exists.intro p (and.intro hp p_dvd_n)))
open eq.ops
theorem infinite_primes (n : nat) : ∃ p, p ≥ n ∧ prime p :=
let m := fact (n + 1) in
have Hn1 : n + 1 ≥ 1, from succ_le_succ (zero_le _),
have m_ge_1 : m ≥ 1, from le_of_lt_succ (succ_lt_succ (fact_gt_0 _)),
have m1_ge_2 : m + 1 ≥ 2, from succ_le_succ m_ge_1,
obtain p (prime_p : prime p) (p_dvd_m1 : p m + 1), from has_prime_divisor m1_ge_2,
have p_ge_2 : p ≥ 2, from ge_two_of_prime prime_p,
have p_gt_0 : p > 0, from lt_of_succ_lt (lt_of_succ_le p_ge_2),
have p_ge_n : p ≥ n, from by_contradiction
(assume h₁ : ¬ p ≥ n,
have h₂ : p < n, from lt_of_not_ge h₁,
have h₃ : p ≤ n + 1, from le_of_lt (lt.step h₂),
have h₄ : p m, from dvd_fact p_gt_0 h₃,
have h₅ : p 1, from dvd_of_dvd_add_right (!add.comm ▸ p_dvd_m1) h₄,
have h₆ : p ≤ 1, from le_of_dvd zero_lt_one h₅,
absurd (le.trans p_ge_2 h₆) dec_trivial),
exists.intro p (and.intro p_ge_n prime_p)
lemma odd_of_prime {p : nat} : prime p → p > 2 → odd p :=
λ h₁ h₂, by_contradiction (λ hn,
have he : even p, from even_of_not_odd hn,
obtain k (hk : p = 2*k), from exists_of_even he,
have h₂ : 2 p, by rewrite [hk]; apply dvd_mul_right,
or.elim (divisor_of_prime h₁ h₂)
(λ h : 2 = 1, absurd h dec_trivial)
(λ h : 2 = p, by subst h; exact absurd h₂ !lt.irrefl))
lemma coprime_of_prime_of_not_dvd {p n : nat} : prime p → ¬ p n → coprime p n :=
λ h₁ h₂,
assert d₁ : gcd p n p, from !gcd_dvd_left,
assert d₂ : gcd p n n, from !gcd_dvd_right,
or.elim (divisor_of_prime h₁ d₁)
(λ h : gcd p n = 1, h)
(λ h : gcd p n = p,
assert d₃ : p n, by rewrite -h; exact d₂,
by contradiction)
lemma dvd_or_dvd_of_prime_of_dvd_mul {p m n : nat} : prime p → p m * n → p m p n :=
λ h₁ h₂, by_contradiction (λ h,
obtain (n₁ : ¬ p m) (n₂ : ¬ p n), from iff.mp !not_or_iff_not_and_not h,
assert c₁ : coprime p m, from coprime_of_prime_of_not_dvd h₁ n₁,
assert n₃ : p n, from dvd_of_coprime_of_dvd_mul_left c₁ h₂,
by contradiction)
lemma dvd_of_prime_of_dvd_pow {p m : nat} : ∀ {n}, prime p → p m^n → p m
| 0 hp hd :=
assert h₁ : p = 1, from eq_one_of_dvd_one hd,
have h₂ : 1 ≥ 2, by rewrite -h₁; apply ge_two_of_prime hp,
absurd h₂ dec_trivial
| (succ n) hp hd :=
have hd₁ : p (m^n)*m, by rewrite [pow_succ at hd]; exact hd,
or.elim (dvd_or_dvd_of_prime_of_dvd_mul hp hd₁)
(λ h, dvd_of_prime_of_dvd_pow hp h)
(λ h, h)
lemma coprime_pow_of_prime_of_not_dvd {p m a : nat} : prime p → ¬ p a → coprime a (p^m) :=
λ h₁ h₂, coprime_pow_right m (coprime_swap (coprime_of_prime_of_not_dvd h₁ h₂))
lemma coprime_primes {p q : nat} : prime p → prime q → p ≠ q → coprime p q :=
λ hp hq hn,
assert d₁ : gcd p q p, from !gcd_dvd_left,
assert d₂ : gcd p q q, from !gcd_dvd_right,
or.elim (divisor_of_prime hp d₁)
(λ h : gcd p q = 1, h)
(λ h : gcd p q = p,
have d₃ : p q, by rewrite -h; exact d₂,
or.elim (divisor_of_prime hq d₃)
(λ h₁ : p = 1, by subst p; exact absurd hp not_prime_one)
(λ he : p = q, by contradiction))
lemma coprime_pow_primes {p q : nat} (n m : nat) : prime p → prime q → p ≠ q → coprime (p^n) (q^m) :=
λ hp hq hn, coprime_pow_right m (coprime_pow_left n (coprime_primes hp hq hn))
end nat