227 lines
8.2 KiB
Text
227 lines
8.2 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: hit.circle
|
||
Authors: Floris van Doorn
|
||
|
||
Declaration of the circle
|
||
-/
|
||
|
||
import .sphere types.bool types.eq types.int.hott types.arrow types.equiv
|
||
|
||
open eq suspension bool sphere_index is_equiv equiv equiv.ops is_trunc
|
||
|
||
definition circle : Type₀ := sphere 1
|
||
|
||
namespace circle
|
||
|
||
definition base1 : circle := !north
|
||
definition base2 : circle := !south
|
||
definition seg1 : base1 = base2 := merid !north
|
||
definition seg2 : base1 = base2 := merid !south
|
||
|
||
definition base : circle := base1
|
||
definition loop : base = base := seg1 ⬝ seg2⁻¹
|
||
|
||
definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) (x : circle) : P x :=
|
||
begin
|
||
fapply (suspension.rec_on x),
|
||
{ exact Pb1},
|
||
{ exact Pb2},
|
||
{ esimp, intro b, fapply (suspension.rec_on b),
|
||
{ exact Ps1},
|
||
{ exact Ps2},
|
||
{ intro x, cases x}},
|
||
end
|
||
|
||
definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2)
|
||
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) : P x :=
|
||
circle.rec2 Pb1 Pb2 Ps1 Ps2 x
|
||
|
||
theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2)
|
||
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
|
||
!rec_merid
|
||
|
||
theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||
(Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2)
|
||
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
||
!rec_merid
|
||
|
||
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : circle) : P :=
|
||
rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x
|
||
|
||
definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P)
|
||
(Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P :=
|
||
elim2 Pb1 Pb2 Ps1 Ps2 x
|
||
|
||
theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
|
||
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
|
||
begin
|
||
apply (@cancel_left _ _ _ _ (tr_constant seg1 (elim2 Pb1 Pb2 Ps1 Ps2 base1))),
|
||
rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg1],
|
||
end
|
||
|
||
theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
|
||
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
||
begin
|
||
apply (@cancel_left _ _ _ _ (tr_constant seg2 (elim2 Pb1 Pb2 Ps1 Ps2 base1))),
|
||
rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg2],
|
||
end
|
||
|
||
definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : circle) : Type :=
|
||
elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x
|
||
|
||
definition elim2_type_on [reducible] (x : circle) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||
: Type :=
|
||
elim2_type Pb1 Pb2 Ps1 Ps2 x
|
||
|
||
theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
|
||
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn
|
||
|
||
theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
||
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn
|
||
|
||
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase)
|
||
(x : circle) : P x :=
|
||
begin
|
||
fapply (rec2_on x),
|
||
{ exact Pbase},
|
||
{ exact (transport P seg1 Pbase)},
|
||
{ apply idp},
|
||
{ apply tr_eq_of_eq_inv_tr, exact (Ploop⁻¹ ⬝ !con_tr)},
|
||
end
|
||
--rewrite -tr_con, exact Ploop⁻¹
|
||
|
||
protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base)
|
||
(Ploop : loop ▸ Pbase = Pbase) : P x :=
|
||
rec Pbase Ploop x
|
||
|
||
theorem rec_loop_helper {A : Type} (P : A → Type)
|
||
{x y : A} {p : x = y} {u : P x} {v : P y} (q : u = p⁻¹ ▸ v) :
|
||
eq_inv_tr_of_tr_eq (tr_eq_of_eq_inv_tr q) = q :=
|
||
by cases p; exact idp
|
||
|
||
definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p :=
|
||
eq.rec_on p idp
|
||
|
||
theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) :
|
||
apd (rec Pbase Ploop) loop = Ploop :=
|
||
begin
|
||
rewrite [↑loop,apd_con,↑rec,↑rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2,↑ap], --con_idp should work here
|
||
apply concat, apply (ap (λx, x ⬝ _)), apply con_idp, esimp,
|
||
rewrite [rec_loop_helper,inv_con_inv_left],
|
||
apply con_inv_cancel_left
|
||
end
|
||
|
||
protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
|
||
(x : circle) : P :=
|
||
rec Pbase (tr_constant loop Pbase ⬝ Ploop) x
|
||
|
||
protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P)
|
||
(Ploop : Pbase = Pbase) : P :=
|
||
elim Pbase Ploop x
|
||
|
||
theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
|
||
ap (elim Pbase Ploop) loop = Ploop :=
|
||
begin
|
||
apply (@cancel_left _ _ _ _ (tr_constant loop (elim Pbase Ploop base))),
|
||
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_loop],
|
||
end
|
||
|
||
protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase)
|
||
(x : circle) : Type :=
|
||
elim Pbase (ua Ploop) x
|
||
|
||
protected definition elim_type_on [reducible] (x : circle) (Pbase : Type)
|
||
(Ploop : Pbase ≃ Pbase) : Type :=
|
||
elim_type Pbase Ploop x
|
||
|
||
theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
|
||
transport (elim_type Pbase Ploop) loop = Ploop :=
|
||
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_loop];apply cast_ua_fn
|
||
|
||
theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
|
||
transport (elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
|
||
by rewrite [tr_inv_fn,↑to_inv]; apply inv_eq_inv; apply elim_type_loop
|
||
end circle
|
||
|
||
attribute circle.base circle.base1 circle.base2 [constructor]
|
||
attribute circle.rec circle.elim [unfold-c 4]
|
||
attribute circle.elim_type [unfold-c 3]
|
||
attribute circle.rec_on circle.elim_on [unfold-c 2]
|
||
attribute circle.elim_type_on [unfold-c 1]
|
||
attribute circle.rec2 circle.elim2 [unfold-c 6]
|
||
attribute circle.elim2_type [unfold-c 5]
|
||
attribute circle.rec2_on circle.elim2_on [unfold-c 2]
|
||
attribute circle.elim2_type [unfold-c 1]
|
||
|
||
namespace circle
|
||
definition loop_neq_idp : loop ≠ idp :=
|
||
assume H : loop = idp,
|
||
have H2 : Π{A : Type₁} {a : A} (p : a = a), p = idp,
|
||
from λA a p, calc
|
||
p = ap (circle.elim a p) loop : elim_loop
|
||
... = ap (circle.elim a p) (refl base) : by rewrite H,
|
||
absurd !H2 eq_bnot_ne_idp
|
||
|
||
definition nonidp (x : circle) : x = x :=
|
||
circle.rec_on x loop
|
||
(calc
|
||
loop ▸ loop = loop⁻¹ ⬝ loop ⬝ loop : transport_eq_lr
|
||
... = loop : by rewrite [con.left_inv, idp_con])
|
||
|
||
definition nonidp_neq_idp : nonidp ≠ (λx, idp) :=
|
||
assume H : nonidp = λx, idp,
|
||
have H2 : loop = idp, from apd10 H base,
|
||
absurd H2 loop_neq_idp
|
||
|
||
open int
|
||
|
||
protected definition code [unfold-c 1] (x : circle) : Type₀ :=
|
||
circle.elim_type_on x ℤ equiv_succ
|
||
|
||
definition transport_code_loop (a : ℤ) : transport code loop a = succ a :=
|
||
ap10 !elim_type_loop a
|
||
|
||
definition transport_code_loop_inv (a : ℤ)
|
||
: transport code loop⁻¹ a = pred a :=
|
||
ap10 !elim_type_loop_inv a
|
||
|
||
protected definition encode {x : circle} (p : base = x) : code x :=
|
||
transport code p (of_num 0) -- why is the explicit coercion needed here?
|
||
|
||
definition circle_eq_equiv (x : circle) : (base = x) ≃ code x :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact encode},
|
||
{ refine circle.rec_on x _ _,
|
||
{ exact power loop},
|
||
{ apply eq_of_homotopy, intro a,
|
||
refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _,
|
||
rewrite [transport_code_loop_inv,power_con,succ_pred]}},
|
||
{ refine circle.rec_on x _ _,
|
||
{ intro a, esimp [base,base1], --simplify after #587
|
||
apply rec_nat_on a,
|
||
{ exact idp},
|
||
{ intros n p,
|
||
apply transport (λ(y : base = base), transport code y _ = _), apply power_con,
|
||
rewrite [▸*,con_tr, transport_code_loop, ↑[encode,code] at p, p]},
|
||
{ intros n p,
|
||
apply transport (λ(y : base = base), transport code y _ = _),
|
||
{ exact !power_con_inv ⬝ ap (power loop) !neg_succ⁻¹},
|
||
rewrite [▸*,con_tr,transport_code_loop_inv, ↑[encode,code] at p, p, -neg_succ]}},
|
||
{ apply eq_of_homotopy, intro a, esimp [base,base1] at *, }},
|
||
--simplify after #587
|
||
{ intro p, cases p, exact idp},
|
||
end
|
||
|
||
definition base_eq_base_equiv : (base = base) ≃ ℤ :=
|
||
circle_eq_equiv base
|
||
|
||
|
||
end circle
|