lean2/hott/algebra/category/constructions/order.hlean
2016-03-01 13:52:53 -08:00

51 lines
1.3 KiB
Text

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jakob von Raumer
Categories of (hprop value) ordered sets.
-/
import ..category algebra.order types.fin
open algebra category is_trunc is_equiv equiv iso
namespace category
section
universe variable l
parameters (A : Type.{l}) [HA : is_hset A] [OA : weak_order.{l} A]
[Hle : Π a b : A, is_hprop (a ≤ b)]
include A HA OA Hle
definition precategory_order [constructor] : precategory.{l l} A :=
begin
fconstructor,
{ intro a b, exact a ≤ b },
{ intro a b c, exact ge.trans },
{ intro a, apply le.refl },
do 5 (intros; apply is_hprop.elim),
{ intros, apply is_trunc_succ }
end
local attribute [instance] precategory_order
definition category_order : category.{l l} A :=
begin
fapply category.mk precategory_order,
intros a b, fapply adjointify,
{ intro f, apply le.antisymm, apply (iso.to_hom f), apply (iso.to_inv f) },
{ intro f, fapply iso_eq, esimp[precategory_order], apply is_hprop.elim },
{ intro p, apply is_hprop.elim }
end
end
open fin
definition category_fin [constructor] (n : nat) : category (fin n) :=
category_order (fin n)
definition Category_fin [reducible] [constructor] (n : nat) : Category :=
Category.mk (fin n) (category_fin n)
end category