lean2/library/data/empty.lean
Leonardo de Moura 88c659c54e feaf(library): make sure basic standard library can be compiled with option "--to_axiom"
We use this option to erase proofs when generating the javascript
version. The proofs are erased to minimize the size of the file that
must be downloaded by users
2015-07-29 16:11:23 -07:00

37 lines
1.3 KiB
Text

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Floris van Doorn
-/
import logic.cast
namespace empty
protected definition elim (A : Type) : empty → A :=
empty.rec (λe, A)
protected definition subsingleton [instance] : subsingleton empty :=
subsingleton.intro (λ a b, !empty.elim a)
end empty
protected definition empty.has_decidable_eq [instance] : decidable_eq empty :=
take (a b : empty), decidable.inl (!empty.elim a)
definition tneg.tneg (A : Type) := A → empty
prefix `~` := tneg.tneg
namespace tneg
variables {A B : Type}
protected definition intro (H : A → empty) : ~A := H
protected definition elim (H1 : ~A) (H2 : A) : empty := H1 H2
protected definition empty : ~empty := λH : empty, H
definition tabsurd (H1 : A) (H2 : ~A) : B := !empty.elim (H2 H1)
definition tneg_tneg_intro (H : A) : ~~A := λH2 : ~A, tneg.elim H2 H
definition tmt (H1 : A → B) (H2 : ~B) : ~A := λHA : A, tabsurd (H1 HA) H2
definition tneg_pi_left {B : A → Type} (H : ~Πa, B a) : ~~A :=
λHnA : ~A, tneg.elim H (λHA : A, tabsurd HA HnA)
definition tneg_function_right (H : ~(A → B)) : ~B :=
λHB : B, tneg.elim H (λHA : A, HB)
end tneg