122 lines
4.3 KiB
Text
122 lines
4.3 KiB
Text
/-
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Module: algebra.relation
|
|
Author: Jeremy Avigad
|
|
|
|
General properties of relations, and classes for equivalence relations and congruences.
|
|
-/
|
|
|
|
namespace relation
|
|
|
|
/- properties of binary relations -/
|
|
|
|
section
|
|
variables {T : Type} (R : T → T → Type)
|
|
|
|
definition reflexive : Type := Πx, R x x
|
|
definition symmetric : Type := Π⦃x y⦄, R x y → R y x
|
|
definition transitive : Type := Π⦃x y z⦄, R x y → R y z → R x z
|
|
end
|
|
|
|
|
|
/- classes for equivalence relations -/
|
|
|
|
structure is_reflexive [class] {T : Type} (R : T → T → Type) := (refl : reflexive R)
|
|
structure is_symmetric [class] {T : Type} (R : T → T → Type) := (symm : symmetric R)
|
|
structure is_transitive [class] {T : Type} (R : T → T → Type) := (trans : transitive R)
|
|
|
|
structure is_equivalence [class] {T : Type} (R : T → T → Type)
|
|
extends is_reflexive R, is_symmetric R, is_transitive R
|
|
|
|
-- partial equivalence relation
|
|
structure is_PER {T : Type} (R : T → T → Type) extends is_symmetric R, is_transitive R
|
|
|
|
-- Generic notation. For example, is_refl R is the reflexivity of R, if that can be
|
|
-- inferred by type class inference
|
|
section
|
|
variables {T : Type} (R : T → T → Type)
|
|
definition rel_refl [C : is_reflexive R] := is_reflexive.refl R
|
|
definition rel_symm [C : is_symmetric R] := is_symmetric.symm R
|
|
definition rel_trans [C : is_transitive R] := is_transitive.trans R
|
|
end
|
|
|
|
|
|
/- classes for unary and binary congruences with respect to arbitrary relations -/
|
|
|
|
structure is_congruence [class]
|
|
{T1 : Type} (R1 : T1 → T1 → Type)
|
|
{T2 : Type} (R2 : T2 → T2 → Type)
|
|
(f : T1 → T2) :=
|
|
(congr : Π{x y}, R1 x y → R2 (f x) (f y))
|
|
|
|
structure is_congruence2 [class]
|
|
{T1 : Type} (R1 : T1 → T1 → Type)
|
|
{T2 : Type} (R2 : T2 → T2 → Type)
|
|
{T3 : Type} (R3 : T3 → T3 → Type)
|
|
(f : T1 → T2 → T3) :=
|
|
(congr2 : Π{x1 y1 : T1} {x2 y2 : T2}, R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2))
|
|
|
|
namespace is_congruence
|
|
|
|
-- makes the type class explicit
|
|
definition app {T1 : Type} {R1 : T1 → T1 → Type} {T2 : Type} {R2 : T2 → T2 → Type}
|
|
{f : T1 → T2} (C : is_congruence R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
|
|
is_congruence.rec (λu, u) C x y
|
|
|
|
definition app2 {T1 : Type} {R1 : T1 → T1 → Type} {T2 : Type} {R2 : T2 → T2 → Type}
|
|
{T3 : Type} {R3 : T3 → T3 → Type}
|
|
{f : T1 → T2 → T3} (C : is_congruence2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ :
|
|
R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
|
|
is_congruence2.rec (λu, u) C x1 y1 x2 y2
|
|
|
|
/- tools to build instances -/
|
|
|
|
theorem compose
|
|
{T2 : Type} {R2 : T2 → T2 → Type}
|
|
{T3 : Type} {R3 : T3 → T3 → Type}
|
|
{g : T2 → T3} (C2 : is_congruence R2 R3 g)
|
|
⦃T1 : Type⦄ {R1 : T1 → T1 → Type}
|
|
{f : T1 → T2} (C1 : is_congruence R1 R2 f) :
|
|
is_congruence R1 R3 (λx, g (f x)) :=
|
|
is_congruence.mk (λx1 x2 H, app C2 (app C1 H))
|
|
|
|
theorem compose21
|
|
{T2 : Type} {R2 : T2 → T2 → Type}
|
|
{T3 : Type} {R3 : T3 → T3 → Type}
|
|
{T4 : Type} {R4 : T4 → T4 → Type}
|
|
{g : T2 → T3 → T4} (C3 : is_congruence2 R2 R3 R4 g)
|
|
⦃T1 : Type⦄ {R1 : T1 → T1 → Type}
|
|
{f1 : T1 → T2} (C1 : is_congruence R1 R2 f1)
|
|
{f2 : T1 → T3} (C2 : is_congruence R1 R3 f2) :
|
|
is_congruence R1 R4 (λx, g (f1 x) (f2 x)) :=
|
|
is_congruence.mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
|
|
|
|
theorem const {T2 : Type} (R2 : T2 → T2 → Type) (H : relation.reflexive R2)
|
|
⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
|
is_congruence R1 R2 (λu : T1, c) :=
|
|
is_congruence.mk (λx y H1, H c)
|
|
|
|
end is_congruence
|
|
|
|
theorem congruence_const [instance] {T2 : Type} (R2 : T2 → T2 → Type)
|
|
[C : is_reflexive R2] ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
|
|
is_congruence R1 R2 (λu : T1, c) :=
|
|
is_congruence.const R2 (is_reflexive.refl R2) R1 c
|
|
|
|
theorem congruence_trivial [instance] {T : Type} (R : T → T → Type) :
|
|
is_congruence R R (λu, u) :=
|
|
is_congruence.mk (λx y H, H)
|
|
|
|
|
|
/- relations that can be coerced to functions / implications-/
|
|
|
|
structure mp_like [class] (R : Type → Type → Type) :=
|
|
(app : Π{a b : Type}, R a b → (a → b))
|
|
|
|
definition rel_mp (R : Type → Type → Type) [C : mp_like R] {a b : Type} (H : R a b) :=
|
|
mp_like.app H
|
|
|
|
|
|
end relation
|