lean2/hott/types/pointed2.hlean
Floris van Doorn 5ad4443237 feat(pointed): rename pequiv.MK2 to pequiv.MK, it is the more natural constructor
also move some definitions from pointed or equiv to pointed2 and define transitivity so that it computes
2017-06-14 22:47:55 -04:00

972 lines
46 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2017 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
More results about pointed types.
Contains
- squares of pointed maps,
- equalities between pointed homotopies and
- squares between pointed homotopies
- pointed maps into and out of (ppmap A B), the pointed type of pointed maps from A to B
-/
import algebra.homotopy_group eq2
open pointed eq unit is_trunc trunc nat group is_equiv equiv sigma function bool
namespace pointed
variables {A B C : Type*}
section psquare
/-
Squares of pointed maps
We treat expressions of the form
psquare f g h k :≡ k ∘* f ~* g ∘* h
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
Then the following are operations on squares
-/
variables {A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁
definition psquare_of_phomotopy (p : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁ :=
p
definition phomotopy_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ :=
p
definition phdeg_square {f f' : A →* A'} (p : f ~* f') : psquare !pid !pid f f' :=
!pcompose_pid ⬝* p⁻¹* ⬝* !pid_pcompose⁻¹*
definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid :=
!pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹*
variables (f₀₁ f₁₀)
definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl
definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl
variables {f₀₁ f₁₀}
definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁
definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀
definition phconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) :
psquare (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) f₀₁ f₄₁ :=
!passoc⁻¹* ⬝* pwhisker_right f₁₀ q ⬝* !passoc ⬝* pwhisker_left f₃₂ p ⬝* !passoc⁻¹*
definition pvconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
psquare f₁₀ f₁₄ (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₂₁) :=
!passoc ⬝* pwhisker_left _ p ⬝* !passoc⁻¹* ⬝* pwhisker_right _ q ⬝* !passoc
definition phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* f₂₁ f₀₁ :=
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv f₁₂)⁻¹* ⬝* !passoc ⬝*
pwhisker_left _
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
definition pvinverse {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare f₁₂ f₁₀ f₀₁⁻¹ᵉ* f₂₁⁻¹ᵉ* :=
(phinverse p⁻¹*)⁻¹*
definition phomotopy_hconcat (q : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare f₁₀ f₁₂ f₀₁' f₂₁ :=
p ⬝* pwhisker_left f₁₂ q⁻¹*
definition hconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) :
psquare f₁₀ f₁₂ f₀₁ f₂₁' :=
pwhisker_right f₁₀ q ⬝* p
definition phomotopy_vconcat (q : f₁₀' ~* f₁₀) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare f₁₀' f₁₂ f₀₁ f₂₁ :=
pwhisker_left f₂₁ q ⬝* p
definition vconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₁₂' ~* f₁₂) :
psquare f₁₀ f₁₂' f₀₁ f₂₁ :=
p ⬝* pwhisker_right f₀₁ q⁻¹*
infix ` ⬝h* `:73 := phconcat
infix ` ⬝v* `:73 := pvconcat
infixl ` ⬝hp* `:72 := hconcat_phomotopy
infixr ` ⬝ph* `:72 := phomotopy_hconcat
infixl ` ⬝vp* `:72 := vconcat_phomotopy
infixr ` ⬝pv* `:72 := phomotopy_vconcat
postfix `⁻¹ʰ*`:(max+1) := phinverse
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
definition pwhisker_tl (f : A →* A₀₀) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (f₁₀ ∘* f) f₁₂ (f₀₁ ∘* f) f₂₁ :=
!passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc
definition ap1_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (Ω→ f₁₀) (Ω→ f₁₂) (Ω→ f₀₁) (Ω→ f₂₁) :=
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
definition apn_psquare (n : ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (Ω→[n] f₁₀) (Ω→[n] f₁₂) (Ω→[n] f₀₁) (Ω→[n] f₂₁) :=
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂)
(ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) :=
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
definition homotopy_group_functor_psquare (n : ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) :=
!homotopy_group_functor_compose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝*
!homotopy_group_functor_compose
definition homotopy_group_homomorphism_psquare (n : ) [H : is_succ n]
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) :=
begin
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
end
end psquare
definition punit_pmap_phomotopy [constructor] {A : Type*} (f : punit →* A) :
f ~* pconst punit A :=
begin
fapply phomotopy.mk,
{ intro u, induction u, exact respect_pt f },
{ reflexivity }
end
definition is_contr_punit_pmap (A : Type*) : is_contr (punit →* A) :=
is_contr.mk (pconst punit A) (λf, eq_of_phomotopy (punit_pmap_phomotopy f)⁻¹*)
definition phomotopy_eq_equiv {A B : Type*} {f g : A →* B} (h k : f ~* g) :
(h = k) ≃ Σ(p : to_homotopy h ~ to_homotopy k),
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h :=
calc
h = k ≃ phomotopy.sigma_char _ _ h = phomotopy.sigma_char _ _ k
: eq_equiv_fn_eq (phomotopy.sigma_char f g) h k
... ≃ Σ(p : to_homotopy h = to_homotopy k),
pathover (λp, p pt ⬝ respect_pt g = respect_pt f) (to_homotopy_pt h) p (to_homotopy_pt k)
: sigma_eq_equiv _ _
... ≃ Σ(p : to_homotopy h = to_homotopy k),
to_homotopy_pt h = ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k
: sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (to_homotopy_pt h) (to_homotopy_pt k))
... ≃ Σ(p : to_homotopy h = to_homotopy k),
ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k = to_homotopy_pt h
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
... ≃ Σ(p : to_homotopy h = to_homotopy k),
whisker_right (respect_pt g) (apd10 p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
: sigma_equiv_sigma_right (λp, equiv_eq_closed_left _ (whisker_right _ !whisker_right_ap⁻¹))
... ≃ Σ(p : to_homotopy h ~ to_homotopy k),
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
: sigma_equiv_sigma_left' eq_equiv_homotopy
definition phomotopy_eq {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
(q : whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h) : h = k :=
to_inv (phomotopy_eq_equiv h k) ⟨p, q⟩
definition phomotopy_eq' {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
(q : square (to_homotopy_pt h) (to_homotopy_pt k) (whisker_right (respect_pt g) (p pt)) idp) : h = k :=
phomotopy_eq p (eq_of_square q)⁻¹
definition trans_refl {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* phomotopy.refl g = p :=
begin
induction A with A a₀, induction B with B b₀,
induction f with f f₀, induction g with g g₀, induction p with p p₀,
esimp at *, induction g₀, induction p₀,
reflexivity
end
definition eq_of_phomotopy_trans {X Y : Type*} {f g h : X →* Y} (p : f ~* g) (q : g ~* h) :
eq_of_phomotopy (p ⬝* q) = eq_of_phomotopy p ⬝ eq_of_phomotopy q :=
begin
induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp,
exact ap eq_of_phomotopy !trans_refl ⬝ whisker_left _ !eq_of_phomotopy_refl⁻¹
end
definition refl_trans {A B : Type*} {f g : A →* B} (p : f ~* g) : phomotopy.refl f ⬝* p = p :=
begin
induction p using phomotopy_rec_on_idp,
induction A with A a₀, induction B with B b₀,
induction f with f f₀, esimp at *, induction f₀,
reflexivity
end
definition trans_assoc {A B : Type*} {f g h i : A →* B} (p : f ~* g) (q : g ~* h)
(r : h ~* i) : p ⬝* q ⬝* r = p ⬝* (q ⬝* r) :=
begin
induction r using phomotopy_rec_on_idp,
induction q using phomotopy_rec_on_idp,
induction p using phomotopy_rec_on_idp,
induction B with B b₀,
induction f with f f₀, esimp at *, induction f₀,
reflexivity
end
definition refl_symm {A B : Type*} (f : A →* B) : phomotopy.rfl⁻¹* = phomotopy.refl f :=
begin
induction B with B b₀,
induction f with f f₀, esimp at *, induction f₀,
reflexivity
end
definition symm_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹*⁻¹* = p :=
phomotopy_eq (λa, !inv_inv)
begin
induction p using phomotopy_rec_on_idp, induction f with f f₀, induction B with B b₀,
esimp at *, induction f₀, reflexivity
end
definition trans_right_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* p⁻¹* = phomotopy.rfl :=
begin
induction p using phomotopy_rec_on_idp, exact !refl_trans ⬝ !refl_symm
end
definition trans_left_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹* ⬝* p = phomotopy.rfl :=
begin
induction p using phomotopy_rec_on_idp, exact !trans_refl ⬝ !refl_symm
end
definition trans2 {A B : Type*} {f g h : A →* B} {p p' : f ~* g} {q q' : g ~* h}
(r : p = p') (s : q = q') : p ⬝* q = p' ⬝* q' :=
ap011 phomotopy.trans r s
definition pcompose3 {A B C : Type*} {g g' : B →* C} {f f' : A →* B}
{p p' : g ~* g'} {q q' : f ~* f'} (r : p = p') (s : q = q') : p ◾* q = p' ◾* q' :=
ap011 pcompose2 r s
definition symm2 {A B : Type*} {f g : A →* B} {p p' : f ~* g} (r : p = p') : p⁻¹* = p'⁻¹* :=
ap phomotopy.symm r
infixl ` ◾** `:80 := pointed.trans2
infixl ` ◽* `:81 := pointed.pcompose3
postfix `⁻²**`:(max+1) := pointed.symm2
definition trans_symm {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g ~* h) :
(p ⬝* q)⁻¹* = q⁻¹* ⬝* p⁻¹* :=
begin
induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp,
exact !trans_refl⁻²** ⬝ !trans_refl⁻¹ ⬝ idp ◾** !refl_symm⁻¹
end
definition phwhisker_left {A B : Type*} {f g h : A →* B} (p : f ~* g) {q q' : g ~* h}
(s : q = q') : p ⬝* q = p ⬝* q' :=
idp ◾** s
definition phwhisker_right {A B : Type*} {f g h : A →* B} {p p' : f ~* g} (q : g ~* h)
(r : p = p') : p ⬝* q = p' ⬝* q :=
r ◾** idp
definition pwhisker_left_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
pwhisker_left g (phomotopy.refl f) = phomotopy.refl (g ∘* f) :=
begin
induction A with A a₀, induction B with B b₀, induction C with C c₀,
induction f with f f₀, induction g with g g₀,
esimp at *, induction g₀, induction f₀, reflexivity
end
definition pwhisker_right_refl {A B C : Type*} (f : A →* B) (g : B →* C) :
pwhisker_right f (phomotopy.refl g) = phomotopy.refl (g ∘* f) :=
begin
induction A with A a₀, induction B with B b₀, induction C with C c₀,
induction f with f f₀, induction g with g g₀,
esimp at *, induction g₀, induction f₀, reflexivity
end
definition pcompose2_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
phomotopy.refl g ◾* phomotopy.refl f = phomotopy.rfl :=
!pwhisker_right_refl ◾** !pwhisker_left_refl ⬝ !refl_trans
definition pcompose2_refl_left {A B C : Type*} (g : B →* C) {f f' : A →* B} (p : f ~* f') :
phomotopy.rfl ◾* p = pwhisker_left g p :=
!pwhisker_right_refl ◾** idp ⬝ !refl_trans
definition pcompose2_refl_right {A B C : Type*} {g g' : B →* C} (f : A →* B) (p : g ~* g') :
p ◾* phomotopy.rfl = pwhisker_right f p :=
idp ◾** !pwhisker_left_refl ⬝ !trans_refl
definition pwhisker_left_trans {A B C : Type*} (g : B →* C) {f₁ f₂ f₃ : A →* B}
(p : f₁ ~* f₂) (q : f₂ ~* f₃) :
pwhisker_left g (p ⬝* q) = pwhisker_left g p ⬝* pwhisker_left g q :=
begin
induction p using phomotopy_rec_on_idp,
induction q using phomotopy_rec_on_idp,
refine _ ⬝ !pwhisker_left_refl⁻¹ ◾** !pwhisker_left_refl⁻¹,
refine ap (pwhisker_left g) !trans_refl ⬝ !pwhisker_left_refl ⬝ !trans_refl⁻¹
end
definition pwhisker_right_trans {A B C : Type*} (f : A →* B) {g₁ g₂ g₃ : B →* C}
(p : g₁ ~* g₂) (q : g₂ ~* g₃) :
pwhisker_right f (p ⬝* q) = pwhisker_right f p ⬝* pwhisker_right f q :=
begin
induction p using phomotopy_rec_on_idp,
induction q using phomotopy_rec_on_idp,
refine _ ⬝ !pwhisker_right_refl⁻¹ ◾** !pwhisker_right_refl⁻¹,
refine ap (pwhisker_right f) !trans_refl ⬝ !pwhisker_right_refl ⬝ !trans_refl⁻¹
end
definition pwhisker_left_symm {A B C : Type*} (g : B →* C) {f₁ f₂ : A →* B} (p : f₁ ~* f₂) :
pwhisker_left g p⁻¹* = (pwhisker_left g p)⁻¹* :=
begin
induction p using phomotopy_rec_on_idp,
refine _ ⬝ ap phomotopy.symm !pwhisker_left_refl⁻¹,
refine ap (pwhisker_left g) !refl_symm ⬝ !pwhisker_left_refl ⬝ !refl_symm⁻¹
end
definition pwhisker_right_symm {A B C : Type*} (f : A →* B) {g₁ g₂ : B →* C} (p : g₁ ~* g₂) :
pwhisker_right f p⁻¹* = (pwhisker_right f p)⁻¹* :=
begin
induction p using phomotopy_rec_on_idp,
refine _ ⬝ ap phomotopy.symm !pwhisker_right_refl⁻¹,
refine ap (pwhisker_right f) !refl_symm ⬝ !pwhisker_right_refl ⬝ !refl_symm⁻¹
end
definition trans_eq_of_eq_symm_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
{r : f ~* h} (s : q = p⁻¹* ⬝* r) : p ⬝* q = r :=
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_right_inv p ◾** idp ⬝ !refl_trans
definition eq_symm_trans_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
{r : f ~* h} (s : p ⬝* q = r) : q = p⁻¹* ⬝* r :=
!refl_trans⁻¹ ⬝ !trans_left_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
definition trans_eq_of_eq_trans_symm {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
{r : f ~* h} (s : p = r ⬝* q⁻¹*) : p ⬝* q = r :=
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_left_inv q ⬝ !trans_refl
definition eq_trans_symm_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
{r : f ~* h} (s : p ⬝* q = r) : p = r ⬝* q⁻¹* :=
!trans_refl⁻¹ ⬝ idp ◾** !trans_right_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
definition eq_trans_of_symm_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
{r : f ~* h} (s : p⁻¹* ⬝* r = q) : r = p ⬝* q :=
!refl_trans⁻¹ ⬝ !trans_right_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
definition symm_trans_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
{r : f ~* h} (s : r = p ⬝* q) : p⁻¹* ⬝* r = q :=
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_left_inv p ◾** idp ⬝ !refl_trans
definition eq_trans_of_trans_symm_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
{r : f ~* h} (s : r ⬝* q⁻¹* = p) : r = p ⬝* q :=
!trans_refl⁻¹ ⬝ idp ◾** !trans_left_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
definition trans_symm_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
{r : f ~* h} (s : r = p ⬝* q) : r ⬝* q⁻¹* = p :=
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_right_inv q ⬝ !trans_refl
section phsquare
/-
Squares of pointed homotopies
-/
variables {f f' f₀₀ f₂₀ f₄₀ f₀₂ f₂₂ f₄₂ f₀₄ f₂₄ f₄₄ : A →* B}
{p₁₀ : f₀₀ ~* f₂₀} {p₃₀ : f₂₀ ~* f₄₀}
{p₀₁ : f₀₀ ~* f₀₂} {p₂₁ : f₂₀ ~* f₂₂} {p₄₁ : f₄₀ ~* f₄₂}
{p₁₂ : f₀₂ ~* f₂₂} {p₃₂ : f₂₂ ~* f₄₂}
{p₀₃ : f₀₂ ~* f₀₄} {p₂₃ : f₂₂ ~* f₂₄} {p₄₃ : f₄₂ ~* f₄₄}
{p₁₄ : f₀₄ ~* f₂₄} {p₃₄ : f₂₄ ~* f₄₄}
definition phsquare [reducible] (p₁₀ : f₀₀ ~* f₂₀) (p₁₂ : f₀₂ ~* f₂₂)
(p₀₁ : f₀₀ ~* f₀₂) (p₂₁ : f₂₀ ~* f₂₂) : Type :=
p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂
definition phsquare_of_eq (p : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ := p
definition eq_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂ := p
-- definition phsquare.mk (p : Πx, square (p₁₀ x) (p₁₂ x) (p₀₁ x) (p₂₁ x))
-- (q : cube (square_of_eq (to_homotopy_pt p₁₀)) (square_of_eq (to_homotopy_pt p₁₂))
-- (square_of_eq (to_homotopy_pt p₀₁)) (square_of_eq (to_homotopy_pt p₂₁))
-- (p pt) ids) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ :=
-- begin
-- fapply phomotopy_eq,
-- { intro x, apply eq_of_square (p x) },
-- { generalize p pt, intro r, exact sorry }
-- end
definition phhconcat (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₃₀ p₃₂ p₂₁ p₄₁) :
phsquare (p₁₀ ⬝* p₃₀) (p₁₂ ⬝* p₃₂) p₀₁ p₄₁ :=
!trans_assoc ⬝ idp ◾** q ⬝ !trans_assoc⁻¹ ⬝ p ◾** idp ⬝ !trans_assoc
definition phvconcat (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₁₂ p₁₄ p₀₃ p₂₃) :
phsquare p₁₀ p₁₄ (p₀₁ ⬝* p₀₃) (p₂₁ ⬝* p₂₃) :=
(phhconcat p⁻¹ q⁻¹)⁻¹
definition phhdeg_square {p₁ p₂ : f ~* f'} (q : p₁ = p₂) : phsquare phomotopy.rfl phomotopy.rfl p₁ p₂ :=
!refl_trans ⬝ q⁻¹ ⬝ !trans_refl⁻¹
definition phvdeg_square {p₁ p₂ : f ~* f'} (q : p₁ = p₂) : phsquare p₁ p₂ phomotopy.rfl phomotopy.rfl :=
!trans_refl ⬝ q ⬝ !refl_trans⁻¹
variables (p₀₁ p₁₀)
definition phhrefl : phsquare phomotopy.rfl phomotopy.rfl p₀₁ p₀₁ := phhdeg_square idp
definition phvrefl : phsquare p₁₀ p₁₀ phomotopy.rfl phomotopy.rfl := phvdeg_square idp
variables {p₀₁ p₁₀}
definition phhrfl : phsquare phomotopy.rfl phomotopy.rfl p₀₁ p₀₁ := phhrefl p₀₁
definition phvrfl : phsquare p₁₀ p₁₀ phomotopy.rfl phomotopy.rfl := phvrefl p₁₀
/-
The names are very baroque. The following stands for
"pointed homotopy path-horizontal composition" (i.e. composition on the left with a path)
The names are obtained by using the ones for squares, and putting "ph" in front of it.
In practice, use the notation ⬝ph** defined below, which might be easier to remember
-/
definition phphconcat {p₀₁'} (p : p₀₁' = p₀₁) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
phsquare p₁₀ p₁₂ p₀₁' p₂₁ :=
by induction p; exact q
definition phhpconcat {p₂₁'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₂₁ = p₂₁') :
phsquare p₁₀ p₁₂ p₀₁ p₂₁' :=
by induction p; exact q
definition phpvconcat {p₁₀'} (p : p₁₀' = p₁₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
phsquare p₁₀' p₁₂ p₀₁ p₂₁ :=
by induction p; exact q
definition phvpconcat {p₁₂'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₁₂ = p₁₂') :
phsquare p₁₀ p₁₂' p₀₁ p₂₁ :=
by induction p; exact q
definition phhinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₀⁻¹* p₁₂⁻¹* p₂₁ p₀₁ :=
begin
refine (eq_symm_trans_of_trans_eq _)⁻¹,
refine !trans_assoc⁻¹ ⬝ _,
refine (eq_trans_symm_of_trans_eq _)⁻¹,
exact (eq_of_phsquare p)⁻¹
end
definition phvinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₂ p₁₀ p₀₁⁻¹* p₂₁⁻¹* :=
(phhinverse p⁻¹)⁻¹
infix ` ⬝h** `:78 := phhconcat
infix ` ⬝v** `:78 := phvconcat
infixr ` ⬝ph** `:77 := phphconcat
infixl ` ⬝hp** `:77 := phhpconcat
infixr ` ⬝pv** `:77 := phpvconcat
infixl ` ⬝vp** `:77 := phvpconcat
postfix `⁻¹ʰ**`:(max+1) := phhinverse
postfix `⁻¹ᵛ**`:(max+1) := phvinverse
definition phwhisker_rt (p : f ~* f₂₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
phsquare (p₁₀ ⬝* p⁻¹*) p₁₂ p₀₁ (p ⬝* p₂₁) :=
!trans_assoc ⬝ idp ◾** (!trans_assoc⁻¹ ⬝ !trans_left_inv ◾** idp ⬝ !refl_trans) ⬝ q
definition phwhisker_br (p : f₂₂ ~* f) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
phsquare p₁₀ (p₁₂ ⬝* p) p₀₁ (p₂₁ ⬝* p) :=
!trans_assoc⁻¹ ⬝ q ◾** idp ⬝ !trans_assoc
definition phmove_top_of_left' {p₀₁ : f ~* f₀₂} (p : f₀₀ ~* f)
(q : phsquare p₁₀ p₁₂ (p ⬝* p₀₁) p₂₁) : phsquare (p⁻¹* ⬝* p₁₀) p₁₂ p₀₁ p₂₁ :=
!trans_assoc ⬝ (eq_symm_trans_of_trans_eq (q ⬝ !trans_assoc)⁻¹)⁻¹
definition phmove_bot_of_left {p₀₁ : f₀₀ ~* f} (p : f ~* f₀₂)
(q : phsquare p₁₀ p₁₂ (p₀₁ ⬝* p) p₂₁) : phsquare p₁₀ (p ⬝* p₁₂) p₀₁ p₂₁ :=
q ⬝ !trans_assoc
definition passoc_phomotopy_right {A B C D : Type*} (h : C →* D) (g : B →* C) {f f' : A →* B}
(p : f ~* f') : phsquare (passoc h g f) (passoc h g f')
(pwhisker_left (h ∘* g) p) (pwhisker_left h (pwhisker_left g p)) :=
begin
induction p using phomotopy_rec_on_idp,
refine idp ◾** (ap (pwhisker_left h) !pwhisker_left_refl ⬝ !pwhisker_left_refl) ⬝ _ ⬝
!pwhisker_left_refl⁻¹ ◾** idp,
exact !trans_refl ⬝ !refl_trans⁻¹
end
theorem passoc_phomotopy_middle {A B C D : Type*} (h : C →* D) {g g' : B →* C} (f : A →* B)
(p : g ~* g') : phsquare (passoc h g f) (passoc h g' f)
(pwhisker_right f (pwhisker_left h p)) (pwhisker_left h (pwhisker_right f p)) :=
begin
induction p using phomotopy_rec_on_idp,
rewrite [pwhisker_right_refl, pwhisker_left_refl],
rewrite [pwhisker_right_refl, pwhisker_left_refl],
exact phvrfl
end
definition pwhisker_right_pwhisker_left {A B C : Type*} {g g' : B →* C} {f f' : A →* B}
(p : g ~* g') (q : f ~* f') :
phsquare (pwhisker_right f p) (pwhisker_right f' p) (pwhisker_left g q) (pwhisker_left g' q) :=
begin
induction p using phomotopy_rec_on_idp,
induction q using phomotopy_rec_on_idp,
exact !pwhisker_right_refl ◾** !pwhisker_left_refl ⬝
!pwhisker_left_refl⁻¹ ◾** !pwhisker_right_refl⁻¹
end
definition pwhisker_left_phsquare (f : B →* C) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
phsquare (pwhisker_left f p₁₀) (pwhisker_left f p₁₂)
(pwhisker_left f p₀₁) (pwhisker_left f p₂₁) :=
!pwhisker_left_trans⁻¹ ⬝ ap (pwhisker_left f) p ⬝ !pwhisker_left_trans
definition pwhisker_right_phsquare (f : C →* A) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
phsquare (pwhisker_right f p₁₀) (pwhisker_right f p₁₂)
(pwhisker_right f p₀₁) (pwhisker_right f p₂₁) :=
!pwhisker_right_trans⁻¹ ⬝ ap (pwhisker_right f) p ⬝ !pwhisker_right_trans
end phsquare
definition phomotopy_of_eq_con {A B : Type*} {f g h : A →* B} (p : f = g) (q : g = h) :
phomotopy_of_eq (p ⬝ q) = phomotopy_of_eq p ⬝* phomotopy_of_eq q :=
begin induction q, induction p, exact !trans_refl⁻¹ end
definition pcompose_left_eq_of_phomotopy {A B C : Type*} (g : B →* C) {f f' : A →* B}
(H : f ~* f') : ap (λf, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_left g H) :=
begin
induction H using phomotopy_rec_on_idp,
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
exact !pwhisker_left_refl⁻¹
end
definition pcompose_right_eq_of_phomotopy {A B C : Type*} {g g' : B →* C} (f : A →* B)
(H : g ~* g') : ap (λg, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_right f H) :=
begin
induction H using phomotopy_rec_on_idp,
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
exact !pwhisker_right_refl⁻¹
end
definition phomotopy_of_eq_pcompose_left {A B C : Type*} (g : B →* C) {f f' : A →* B}
(p : f = f') : phomotopy_of_eq (ap (λf, g ∘* f) p) = pwhisker_left g (phomotopy_of_eq p) :=
begin
induction p, exact !pwhisker_left_refl⁻¹
end
definition phomotopy_of_eq_pcompose_right {A B C : Type*} {g g' : B →* C} (f : A →* B)
(p : g = g') : phomotopy_of_eq (ap (λg, g ∘* f) p) = pwhisker_right f (phomotopy_of_eq p) :=
begin
induction p, exact !pwhisker_right_refl⁻¹
end
definition phomotopy_mk_ppmap [constructor] {A B C : Type*} {f g : A →* ppmap B C} (p : Πa, f a ~* g a)
(q : p pt ⬝* phomotopy_of_eq (respect_pt g) = phomotopy_of_eq (respect_pt f))
: f ~* g :=
begin
apply phomotopy.mk (λa, eq_of_phomotopy (p a)),
apply eq_of_fn_eq_fn (pmap_eq_equiv _ _), esimp [pmap_eq_equiv],
refine !phomotopy_of_eq_con ⬝ _,
refine !phomotopy_of_eq_of_phomotopy ◾** idp ⬝ q,
end
/- properties of ppmap, the pointed type of pointed maps -/
definition pcompose_pconst [constructor] (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
definition pconst_pcompose [constructor] (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
phomotopy.mk (λa, rfl) (ap_constant _ _)⁻¹
definition ppcompose_left [constructor] (g : B →* C) : ppmap A B →* ppmap A C :=
pmap.mk (pcompose g) (eq_of_phomotopy (pcompose_pconst g))
definition ppcompose_right [constructor] (f : A →* B) : ppmap B C →* ppmap A C :=
pmap.mk (λg, g ∘* f) (eq_of_phomotopy (pconst_pcompose f))
/- TODO: give construction using pequiv.MK, which computes better (see comment for a start of the proof) -/
definition pequiv_ppcompose_left [constructor] (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
pequiv.MK' (ppcompose_left g) (ppcompose_left g⁻¹ᵉ*)
begin intro f, apply eq_of_phomotopy, apply pinv_pcompose_cancel_left end
begin intro f, apply eq_of_phomotopy, apply pcompose_pinv_cancel_left end
-- pequiv.MK (ppcompose_left g) (ppcompose_left g⁻¹ᵉ*)
-- abstract begin
-- apply phomotopy_mk_ppmap (pinv_pcompose_cancel_left g), esimp,
-- refine !trans_refl ⬝ _,
-- refine _ ⬝ (!phomotopy_of_eq_con ⬝ (!phomotopy_of_eq_pcompose_left ⬝
-- ap (pwhisker_left _) !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
-- end end
-- abstract begin
-- exact sorry
-- end end
definition pequiv_ppcompose_right [constructor] (f : A ≃* B) : ppmap B C ≃* ppmap A C :=
begin
fapply pequiv.MK',
{ exact ppcompose_right f },
{ exact ppcompose_right f⁻¹ᵉ* },
{ intro g, apply eq_of_phomotopy, apply pcompose_pinv_cancel_right },
{ intro g, apply eq_of_phomotopy, apply pinv_pcompose_cancel_right },
end
definition loop_ppmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
pequiv_of_equiv
(calc Ω(ppmap A B) ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
... ≃ (A →* Ω B) : pmap.sigma_char)
(by reflexivity)
definition papply [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
pmap.mk (λ(f : A →* B), f a) idp
definition papply_pcompose [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B :=
pmap.mk (λ(f : A →* B), f a) idp
definition ppmap_pbool_pequiv [constructor] (B : Type*) : ppmap pbool B ≃* B :=
begin
fapply pequiv.MK',
{ exact papply B tt },
{ exact pbool_pmap },
{ intro f, fapply pmap_eq,
{ intro b, cases b, exact !respect_pt⁻¹, reflexivity },
{ exact !con.left_inv⁻¹ }},
{ intro b, reflexivity },
end
definition papn_pt [constructor] (n : ) (A B : Type*) : ppmap A B →* ppmap (Ω[n] A) (Ω[n] B) :=
pmap.mk (λf, apn n f) (eq_of_phomotopy !apn_pconst)
definition papn_fun [constructor] {n : } {A : Type*} (B : Type*) (p : Ω[n] A) :
ppmap A B →* Ω[n] B :=
papply _ p ∘* papn_pt n A B
definition pconst_pcompose_pconst (A B C : Type*) :
pconst_pcompose (pconst A B) = pcompose_pconst (pconst B C) :=
idp
definition pconst_pcompose_phomotopy_pconst {A B C : Type*} {f : A →* B} (p : f ~* pconst A B) :
pconst_pcompose f = pwhisker_left (pconst B C) p ⬝* pcompose_pconst (pconst B C) :=
begin
assert H : Π(p : pconst A B ~* f),
pconst_pcompose f = pwhisker_left (pconst B C) p⁻¹* ⬝* pcompose_pconst (pconst B C),
{ intro p, induction p using phomotopy_rec_on_idp, reflexivity },
refine H p⁻¹* ⬝ ap (pwhisker_left _) !symm_symm ◾** idp,
end
definition passoc_pconst_right {A B C D : Type*} (h : C →* D) (g : B →* C) :
passoc h g (pconst A B) ⬝* (pwhisker_left h (pcompose_pconst g) ⬝* pcompose_pconst h) =
pcompose_pconst (h ∘* g) :=
begin
fapply phomotopy_eq,
{ intro a, exact !idp_con },
{ induction h with h h₀, induction g with g g₀, induction D with D d₀, induction C with C c₀,
esimp at *, induction g₀, induction h₀, reflexivity }
end
definition passoc_pconst_middle {A A' B B' : Type*} (g : B →* B') (f : A' →* A) :
passoc g (pconst A B) f ⬝* (pwhisker_left g (pconst_pcompose f) ⬝* pcompose_pconst g) =
pwhisker_right f (pcompose_pconst g) ⬝* pconst_pcompose f :=
begin
fapply phomotopy_eq,
{ intro a, exact !idp_con ⬝ !idp_con },
{ induction g with g g₀, induction f with f f₀, induction B' with D d₀, induction A with C c₀,
esimp at *, induction g₀, induction f₀, reflexivity }
end
definition passoc_pconst_left {A B C D : Type*} (g : B →* C) (f : A →* B) :
phsquare (passoc (pconst C D) g f) (pconst_pcompose f)
(pwhisker_right f (pconst_pcompose g)) (pconst_pcompose (g ∘* f)) :=
begin
fapply phomotopy_eq,
{ intro a, exact !idp_con },
{ induction g with g g₀, induction f with f f₀, induction C with C c₀, induction B with B b₀,
esimp at *, induction g₀, induction f₀, reflexivity }
end
definition ppcompose_left_pcompose [constructor] {A B C D : Type*} (h : C →* D) (g : B →* C) :
@ppcompose_left A _ _ (h ∘* g) ~* ppcompose_left h ∘* ppcompose_left g :=
begin
fapply phomotopy_mk_ppmap,
{ exact passoc h g },
{ refine idp ◾** (!phomotopy_of_eq_con ⬝
(ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
exact passoc_pconst_right h g }
end
definition ppcompose_right_pcompose [constructor] {A B C D : Type*} (g : B →* C) (f : A →* B) :
@ppcompose_right _ _ D (g ∘* f) ~* ppcompose_right f ∘* ppcompose_right g :=
begin
symmetry,
fapply phomotopy_mk_ppmap,
{ intro h, exact passoc h g f },
{ refine idp ◾** !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ (!phomotopy_of_eq_con ⬝
(ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
exact passoc_pconst_left g f }
end
definition ppcompose_left_ppcompose_right {A A' B B' : Type*} (g : B →* B') (f : A' →* A) :
psquare (ppcompose_left g) (ppcompose_left g) (ppcompose_right f) (ppcompose_right f) :=
begin
fapply phomotopy_mk_ppmap,
{ intro h, exact passoc g h f },
{ refine idp ◾** (!phomotopy_of_eq_con ⬝
(ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (!phomotopy_of_eq_con ⬝
(ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
!phomotopy_of_eq_of_phomotopy)⁻¹,
apply passoc_pconst_middle }
end
definition pcompose_pconst_phomotopy {A B C : Type*} {f f' : B →* C} (p : f ~* f') :
pwhisker_right (pconst A B) p ⬝* pcompose_pconst f' = pcompose_pconst f :=
begin
fapply phomotopy_eq,
{ intro a, exact to_homotopy_pt p },
{ induction p using phomotopy_rec_on_idp, induction C with C c₀, induction f with f f₀,
esimp at *, induction f₀, reflexivity }
end
definition pid_pconst (A B : Type*) : pcompose_pconst (pid B) = pid_pcompose (pconst A B) :=
by reflexivity
definition pid_pconst_pcompose {A B C : Type*} (f : A →* B) :
phsquare (pid_pcompose (pconst B C ∘* f))
(pcompose_pconst (pid C))
(pwhisker_left (pid C) (pconst_pcompose f))
(pconst_pcompose f) :=
begin
fapply phomotopy_eq,
{ reflexivity },
{ induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, reflexivity }
end
definition ppcompose_left_pconst [constructor] (A B C : Type*) :
@ppcompose_left A _ _ (pconst B C) ~* pconst (ppmap A B) (ppmap A C) :=
begin
fapply phomotopy_mk_ppmap,
{ exact pconst_pcompose },
{ refine idp ◾** !phomotopy_of_eq_idp ⬝ !phomotopy_of_eq_of_phomotopy⁻¹ }
end
definition ppcompose_left_phomotopy [constructor] {A B C : Type*} {g g' : B →* C} (p : g ~* g') :
@ppcompose_left A _ _ g ~* ppcompose_left g' :=
begin
induction p using phomotopy_rec_on_idp,
reflexivity
end
definition ppcompose_left_phomotopy_refl {A B C : Type*} (g : B →* C) :
ppcompose_left_phomotopy (phomotopy.refl g) = phomotopy.refl (@ppcompose_left A _ _ g) :=
!phomotopy_rec_on_idp_refl
/- a more explicit proof of ppcompose_left_phomotopy, which might be useful if we need to prove properties about it
-/
-- fapply phomotopy_mk_ppmap,
-- { intro f, exact pwhisker_right f p },
-- { refine ap (λx, _ ⬝* x) !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
-- exact pcompose_pconst_phomotopy p }
definition ppcompose_right_phomotopy [constructor] {A B C : Type*} {f f' : A →* B} (p : f ~* f') :
@ppcompose_right _ _ C f ~* ppcompose_right f' :=
begin
induction p using phomotopy_rec_on_idp,
reflexivity
end
definition pppcompose [constructor] (A B C : Type*) : ppmap B C →* ppmap (ppmap A B) (ppmap A C) :=
pmap.mk ppcompose_left (eq_of_phomotopy !ppcompose_left_pconst)
section psquare
variables {A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
definition ppcompose_left_psquare {A : Type*} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (@ppcompose_left A _ _ f₁₀) (ppcompose_left f₁₂)
(ppcompose_left f₀₁) (ppcompose_left f₂₁) :=
!ppcompose_left_pcompose⁻¹* ⬝* ppcompose_left_phomotopy p ⬝* !ppcompose_left_pcompose
definition ppcompose_right_psquare {A : Type*} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
psquare (@ppcompose_right _ _ A f₁₂) (ppcompose_right f₁₀)
(ppcompose_right f₂₁) (ppcompose_right f₀₁) :=
!ppcompose_right_pcompose⁻¹* ⬝* ppcompose_right_phomotopy p⁻¹* ⬝* !ppcompose_right_pcompose
definition trans_phomotopy_hconcat {f₀₁' f₀₁''}
(q₂ : f₀₁'' ~* f₀₁') (q₁ : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
(q₂ ⬝* q₁) ⬝ph* p = q₂ ⬝ph* q₁ ⬝ph* p :=
idp ◾** (ap (pwhisker_left f₁₂) !trans_symm ⬝ !pwhisker_left_trans) ⬝ !trans_assoc⁻¹
definition symm_phomotopy_hconcat {f₀₁'} (q : f₀₁ ~* f₀₁')
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : q⁻¹* ⬝ph* p = p ⬝* pwhisker_left f₁₂ q :=
idp ◾** ap (pwhisker_left f₁₂) !symm_symm
definition refl_phomotopy_hconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : phomotopy.rfl ⬝ph* p = p :=
idp ◾** (ap (pwhisker_left _) !refl_symm ⬝ !pwhisker_left_refl) ⬝ !trans_refl
local attribute phomotopy.rfl [reducible]
theorem pwhisker_left_phomotopy_hconcat {f₀₁'} (r : f₀₁' ~* f₀₁)
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
pwhisker_left f₀₃ r ⬝ph* (p ⬝v* q) = (r ⬝ph* p) ⬝v* q :=
by induction r using phomotopy_rec_on_idp; rewrite [pwhisker_left_refl, +refl_phomotopy_hconcat]
theorem pvcompose_pwhisker_left {f₀₁'} (r : f₀₁ ~* f₀₁')
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
(p ⬝v* q) ⬝* (pwhisker_left f₁₄ (pwhisker_left f₀₃ r)) = (p ⬝* pwhisker_left f₁₂ r) ⬝v* q :=
by induction r using phomotopy_rec_on_idp; rewrite [+pwhisker_left_refl, + trans_refl]
definition phconcat2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : psquare f₃₀ f₃₂ f₂₁ f₄₁}
(r : p = p') (s : q = q') : p ⬝h* q = p' ⬝h* q' :=
ap011 phconcat r s
definition pvconcat2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : psquare f₁₂ f₁₄ f₀₃ f₂₃}
(r : p = p') (s : q = q') : p ⬝v* q = p' ⬝v* q' :=
ap011 pvconcat r s
definition phinverse2 {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
(r : p = p') : p⁻¹ʰ* = p'⁻¹ʰ* :=
ap phinverse r
definition pvinverse2 {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
(r : p = p') : p⁻¹ᵛ* = p'⁻¹ᵛ* :=
ap pvinverse r
definition phomotopy_hconcat2 {q q' : f₀₁' ~* f₀₁} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
(r : q = q') (s : p = p') : q ⬝ph* p = q' ⬝ph* p' :=
ap011 phomotopy_hconcat r s
definition hconcat_phomotopy2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : f₂₁' ~* f₂₁}
(r : p = p') (s : q = q') : p ⬝hp* q = p' ⬝hp* q' :=
ap011 hconcat_phomotopy r s
definition phomotopy_vconcat2 {q q' : f₁₀' ~* f₁₀} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
(r : q = q') (s : p = p') : q ⬝pv* p = q' ⬝pv* p' :=
ap011 phomotopy_vconcat r s
definition vconcat_phomotopy2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : f₁₂' ~* f₁₂}
(r : p = p') (s : q = q') : p ⬝vp* q = p' ⬝vp* q' :=
ap011 vconcat_phomotopy r s
-- for consistency, should there be a second star here?
infix ` ◾h* `:79 := phconcat2
infix ` ◾v* `:79 := pvconcat2
infixl ` ◾hp* `:79 := hconcat_phomotopy2
infixr ` ◾ph* `:79 := phomotopy_hconcat2
infixl ` ◾vp* `:79 := vconcat_phomotopy2
infixr ` ◾pv* `:79 := phomotopy_vconcat2
postfix `⁻²ʰ*`:(max+1) := phinverse2
postfix `⁻²ᵛ*`:(max+1) := pvinverse2
end psquare
variables {X X' Y Y' Z : Type*}
definition pap1 [constructor] (X Y : Type*) : ppmap X Y →* ppmap (Ω X) (Ω Y) :=
pmap.mk ap1 (eq_of_phomotopy !ap1_pconst)
definition ap1_gen_const {A B : Type} {a₁ a₂ : A} (b : B) (p : a₁ = a₂) :
ap1_gen (const A b) idp idp p = idp :=
ap1_gen_idp_left (const A b) p ⬝ ap_constant p b
definition ap1_gen_compose_const_left
{A B C : Type} (c : C) (f : A → B) {a₁ a₂ : A} (p : a₁ = a₂) :
ap1_gen_compose (const B c) f idp idp idp idp p ⬝
ap1_gen_const c (ap1_gen f idp idp p) =
ap1_gen_const c p :=
begin induction p, reflexivity end
definition ap1_gen_compose_const_right
{A B C : Type} (g : B → C) (b : B) {a₁ a₂ : A} (p : a₁ = a₂) :
ap1_gen_compose g (const A b) idp idp idp idp p ⬝
ap (ap1_gen g idp idp) (ap1_gen_const b p) =
ap1_gen_const (g b) p :=
begin induction p, reflexivity end
definition ap1_pcompose_pconst_left {A B C : Type*} (f : A →* B) :
phsquare (ap1_pcompose (pconst B C) f)
(ap1_pconst A C)
(ap1_phomotopy (pconst_pcompose f))
(pwhisker_right (Ω→ f) (ap1_pconst B C) ⬝* pconst_pcompose (Ω→ f)) :=
begin
induction A with A a₀, induction B with B b₀, induction C with C c₀, induction f with f f₀,
esimp at *, induction f₀,
refine idp ◾** !trans_refl ⬝ _ ⬝ !refl_trans⁻¹ ⬝ !ap1_phomotopy_refl⁻¹ ◾** idp,
fapply phomotopy_eq,
{ exact ap1_gen_compose_const_left c₀ f },
{ reflexivity }
end
definition ap1_pcompose_pconst_right {A B C : Type*} (g : B →* C) :
phsquare (ap1_pcompose g (pconst A B))
(ap1_pconst A C)
(ap1_phomotopy (pcompose_pconst g))
(pwhisker_left (Ω→ g) (ap1_pconst A B) ⬝* pcompose_pconst (Ω→ g)) :=
begin
induction A with A a₀, induction B with B b₀, induction C with C c₀, induction g with g g₀,
esimp at *, induction g₀,
refine idp ◾** !trans_refl ⬝ _ ⬝ !refl_trans⁻¹ ⬝ !ap1_phomotopy_refl⁻¹ ◾** idp,
fapply phomotopy_eq,
{ exact ap1_gen_compose_const_right g b₀ },
{ reflexivity }
end
definition pap1_natural_left [constructor] (f : X' →* X) :
psquare (pap1 X Y) (pap1 X' Y) (ppcompose_right f) (ppcompose_right (Ω→ f)) :=
begin
fapply phomotopy_mk_ppmap,
{ intro g, exact !ap1_pcompose⁻¹* },
{ refine idp ◾** (ap phomotopy_of_eq (!ap1_eq_of_phomotopy ◾ idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (ap phomotopy_of_eq (!pcompose_right_eq_of_phomotopy ◾
idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝ !phomotopy_of_eq_of_phomotopy)⁻¹,
apply symm_trans_eq_of_eq_trans, exact (ap1_pcompose_pconst_left f)⁻¹ }
end
definition pap1_natural_right [constructor] (f : Y →* Y') :
psquare (pap1 X Y) (pap1 X Y') (ppcompose_left f) (ppcompose_left (Ω→ f)) :=
begin
fapply phomotopy_mk_ppmap,
{ intro g, exact !ap1_pcompose⁻¹* },
{ refine idp ◾** (ap phomotopy_of_eq (!ap1_eq_of_phomotopy ◾ idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (ap phomotopy_of_eq (!pcompose_left_eq_of_phomotopy ◾
idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝ !phomotopy_of_eq_of_phomotopy)⁻¹,
apply symm_trans_eq_of_eq_trans, exact (ap1_pcompose_pconst_right f)⁻¹ }
end
open sigma.ops prod
definition pequiv.sigma_char {A B : Type*} :
(A ≃* B) ≃ Σ(f : A →* B), (Σ(g : B →* A), f ∘* g ~* pid B) × (Σ(h : B →* A), h ∘* f ~* pid A) :=
begin
fapply equiv.MK,
{ intro f, exact ⟨f, (⟨pequiv.to_pinv1 f, pequiv.pright_inv f⟩,
⟨pequiv.to_pinv2 f, pequiv.pleft_inv f⟩)⟩, },
{ intro f, exact pequiv.mk' f.1 (pr1 f.2).1 (pr2 f.2).1 (pr1 f.2).2 (pr2 f.2).2 },
{ intro f, induction f with f v, induction v with hl hr, induction hl, induction hr,
reflexivity },
{ intro f, induction f, reflexivity }
end
definition is_contr_pright_inv (f : A ≃* B) : is_contr (Σ(g : B →* A), f ∘* g ~* pid B) :=
begin
fapply is_trunc_equiv_closed,
{ exact !fiber.sigma_char ⬝e sigma_equiv_sigma_right (λg, !pmap_eq_equiv) },
fapply is_contr_fiber_of_is_equiv,
exact pequiv.to_is_equiv (pequiv_ppcompose_left f)
end
definition is_contr_pleft_inv (f : A ≃* B) : is_contr (Σ(h : B →* A), h ∘* f ~* pid A) :=
begin
fapply is_trunc_equiv_closed,
{ exact !fiber.sigma_char ⬝e sigma_equiv_sigma_right (λg, !pmap_eq_equiv) },
fapply is_contr_fiber_of_is_equiv,
exact pequiv.to_is_equiv (pequiv_ppcompose_right f)
end
definition pequiv_eq_equiv (f g : A ≃* B) : (f = g) ≃ f ~* g :=
have Π(f : A →* B), is_prop ((Σ(g : B →* A), f ∘* g ~* pid B) × (Σ(h : B →* A), h ∘* f ~* pid A)),
begin
intro f, apply is_prop_of_imp_is_contr, intro v,
let f' := pequiv.sigma_char⁻¹ᵉ ⟨f, v⟩,
apply is_trunc_prod, exact is_contr_pright_inv f', exact is_contr_pleft_inv f'
end,
calc (f = g) ≃ (pequiv.sigma_char f = pequiv.sigma_char g)
: eq_equiv_fn_eq pequiv.sigma_char f g
... ≃ (f = g :> (A →* B)) : subtype_eq_equiv
... ≃ (f ~* g) : pmap_eq_equiv f g
definition pequiv_eq {f g : A ≃* B} (H : f ~* g) : f = g :=
(pequiv_eq_equiv f g)⁻¹ᵉ H
open algebra
definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) :
pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) :=
begin
induction p,
apply pequiv_eq,
fapply phomotopy.mk,
{ intro g, reflexivity },
{ apply is_prop.elim }
end
end pointed