066b0fcdf9
Breaking changes: pnat was redefined to use subtype instead of a custom inductive type, which affects the notation for pnat 2 and 3
479 lines
19 KiB
Text
479 lines
19 KiB
Text
/-
|
||
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Leonardo de Moura, Haitao Zhang
|
||
|
||
List combinators.
|
||
-/
|
||
import data.list.basic data.equiv
|
||
open nat prod decidable function helper_tactics
|
||
|
||
namespace list
|
||
variables {A B C : Type}
|
||
/- map -/
|
||
definition map (f : A → B) : list A → list B
|
||
| [] := []
|
||
| (a :: l) := f a :: map l
|
||
|
||
theorem map_nil (f : A → B) : map f [] = []
|
||
|
||
theorem map_cons (f : A → B) (a : A) (l : list A) : map f (a :: l) = f a :: map f l
|
||
|
||
lemma map_append (f : A → B) : ∀ l₁ l₂, map f (l₁++l₂) = (map f l₁)++(map f l₂)
|
||
| nil := take l, rfl
|
||
| (a::l) := take l', begin rewrite [append_cons, *map_cons, append_cons, map_append] end
|
||
|
||
lemma map_singleton (f : A → B) (a : A) : map f [a] = [f a] := rfl
|
||
|
||
theorem map_id [simp] : ∀ l : list A, map id l = l
|
||
| [] := rfl
|
||
| (x::xs) := begin rewrite [map_cons, map_id] end
|
||
|
||
theorem map_id' {f : A → A} (H : ∀x, f x = x) : ∀ l : list A, map f l = l
|
||
| [] := rfl
|
||
| (x::xs) := begin rewrite [map_cons, H, map_id'] end
|
||
|
||
theorem map_map [simp] (g : B → C) (f : A → B) : ∀ l, map g (map f l) = map (g ∘ f) l
|
||
| [] := rfl
|
||
| (a :: l) :=
|
||
show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l),
|
||
by rewrite (map_map l)
|
||
|
||
theorem length_map [simp] (f : A → B) : ∀ l : list A, length (map f l) = length l
|
||
| [] := by esimp
|
||
| (a :: l) :=
|
||
show length (map f l) + 1 = length l + 1,
|
||
by rewrite (length_map l)
|
||
|
||
theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l
|
||
| a [] i := absurd i !not_mem_nil
|
||
| a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i)
|
||
(suppose a = x, by rewrite [this, map_cons]; apply mem_cons)
|
||
(suppose a ∈ xs, or.inr (mem_map this))
|
||
|
||
theorem exists_of_mem_map {A B : Type} {f : A → B} {b : B} :
|
||
∀{l}, b ∈ map f l → ∃a, a ∈ l ∧ f a = b
|
||
| [] H := false.elim H
|
||
| (c::l) H := or.elim (iff.mp !mem_cons_iff H)
|
||
(suppose b = f c,
|
||
exists.intro c (and.intro !mem_cons (eq.symm this)))
|
||
(suppose b ∈ map f l,
|
||
obtain a (Hl : a ∈ l) (Hr : f a = b), from exists_of_mem_map this,
|
||
exists.intro a (and.intro (mem_cons_of_mem _ Hl) Hr))
|
||
|
||
theorem eq_of_map_const {A B : Type} {b₁ b₂ : B} : ∀ {l : list A}, b₁ ∈ map (const A b₂) l → b₁ = b₂
|
||
| [] h := absurd h !not_mem_nil
|
||
| (a::l) h :=
|
||
or.elim (eq_or_mem_of_mem_cons h)
|
||
(suppose b₁ = b₂, this)
|
||
(suppose b₁ ∈ map (const A b₂) l, eq_of_map_const this)
|
||
|
||
definition map₂ (f : A → B → C) : list A → list B → list C
|
||
| [] _ := []
|
||
| _ [] := []
|
||
| (x::xs) (y::ys) := f x y :: map₂ xs ys
|
||
|
||
/- filter -/
|
||
definition filter (p : A → Prop) [h : decidable_pred p] : list A → list A
|
||
| [] := []
|
||
| (a::l) := if p a then a :: filter l else filter l
|
||
|
||
theorem filter_nil [simp] (p : A → Prop) [h : decidable_pred p] : filter p [] = []
|
||
|
||
theorem filter_cons_of_pos [simp] {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ l, p a → filter p (a::l) = a :: filter p l :=
|
||
λ l pa, if_pos pa
|
||
|
||
theorem filter_cons_of_neg [simp] {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ l, ¬ p a → filter p (a::l) = filter p l :=
|
||
λ l pa, if_neg pa
|
||
|
||
theorem of_mem_filter {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ {l}, a ∈ filter p l → p a
|
||
| [] ain := absurd ain !not_mem_nil
|
||
| (b::l) ain := by_cases
|
||
(assume pb : p b,
|
||
have a ∈ b :: filter p l, by rewrite [filter_cons_of_pos _ pb at ain]; exact ain,
|
||
or.elim (eq_or_mem_of_mem_cons this)
|
||
(suppose a = b, by rewrite [-this at pb]; exact pb)
|
||
(suppose a ∈ filter p l, of_mem_filter this))
|
||
(suppose ¬ p b, by rewrite [filter_cons_of_neg _ this at ain]; exact (of_mem_filter ain))
|
||
|
||
theorem mem_of_mem_filter {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ {l}, a ∈ filter p l → a ∈ l
|
||
| [] ain := absurd ain !not_mem_nil
|
||
| (b::l) ain := by_cases
|
||
(λ pb : p b,
|
||
have a ∈ b :: filter p l, by rewrite [filter_cons_of_pos _ pb at ain]; exact ain,
|
||
or.elim (eq_or_mem_of_mem_cons this)
|
||
(suppose a = b, by rewrite this; exact !mem_cons)
|
||
(suppose a ∈ filter p l, mem_cons_of_mem _ (mem_of_mem_filter this)))
|
||
(suppose ¬ p b, by rewrite [filter_cons_of_neg _ this at ain]; exact (mem_cons_of_mem _ (mem_of_mem_filter ain)))
|
||
|
||
theorem mem_filter_of_mem {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ {l}, a ∈ l → p a → a ∈ filter p l
|
||
| [] ain pa := absurd ain !not_mem_nil
|
||
| (b::l) ain pa := by_cases
|
||
(λ pb : p b, or.elim (eq_or_mem_of_mem_cons ain)
|
||
(λ aeqb : a = b, by rewrite [filter_cons_of_pos _ pb, aeqb]; exact !mem_cons)
|
||
(λ ainl : a ∈ l, by rewrite [filter_cons_of_pos _ pb]; exact (mem_cons_of_mem _ (mem_filter_of_mem ainl pa))))
|
||
(λ npb : ¬ p b, or.elim (eq_or_mem_of_mem_cons ain)
|
||
(λ aeqb : a = b, absurd (eq.rec_on aeqb pa) npb)
|
||
(λ ainl : a ∈ l, by rewrite [filter_cons_of_neg _ npb]; exact (mem_filter_of_mem ainl pa)))
|
||
|
||
theorem filter_sub [simp] {p : A → Prop} [h : decidable_pred p] (l : list A) : filter p l ⊆ l :=
|
||
λ a ain, mem_of_mem_filter ain
|
||
|
||
theorem filter_append {p : A → Prop} [h : decidable_pred p] : ∀ (l₁ l₂ : list A), filter p (l₁++l₂) = filter p l₁ ++ filter p l₂
|
||
| [] l₂ := rfl
|
||
| (a::l₁) l₂ := by_cases
|
||
(suppose p a, by rewrite [append_cons, *filter_cons_of_pos _ this, filter_append])
|
||
(suppose ¬ p a, by rewrite [append_cons, *filter_cons_of_neg _ this, filter_append])
|
||
|
||
/- foldl & foldr -/
|
||
definition foldl (f : A → B → A) : A → list B → A
|
||
| a [] := a
|
||
| a (b :: l) := foldl (f a b) l
|
||
|
||
theorem foldl_nil [simp] (f : A → B → A) (a : A) : foldl f a [] = a
|
||
|
||
theorem foldl_cons [simp] (f : A → B → A) (a : A) (b : B) (l : list B) : foldl f a (b::l) = foldl f (f a b) l
|
||
|
||
definition foldr (f : A → B → B) : B → list A → B
|
||
| b [] := b
|
||
| b (a :: l) := f a (foldr b l)
|
||
|
||
theorem foldr_nil [simp] (f : A → B → B) (b : B) : foldr f b [] = b
|
||
|
||
theorem foldr_cons [simp] (f : A → B → B) (b : B) (a : A) (l : list A) : foldr f b (a::l) = f a (foldr f b l)
|
||
|
||
section foldl_eq_foldr
|
||
-- foldl and foldr coincide when f is commutative and associative
|
||
parameters {α : Type} {f : α → α → α}
|
||
hypothesis (Hcomm : ∀ a b, f a b = f b a)
|
||
hypothesis (Hassoc : ∀ a b c, f (f a b) c = f a (f b c))
|
||
include Hcomm Hassoc
|
||
|
||
theorem foldl_eq_of_comm_of_assoc : ∀ a b l, foldl f a (b::l) = f b (foldl f a l)
|
||
| a b nil := Hcomm a b
|
||
| a b (c::l) :=
|
||
begin
|
||
change foldl f (f (f a b) c) l = f b (foldl f (f a c) l),
|
||
rewrite -foldl_eq_of_comm_of_assoc,
|
||
change foldl f (f (f a b) c) l = foldl f (f (f a c) b) l,
|
||
have H₁ : f (f a b) c = f (f a c) b, by rewrite [Hassoc, Hassoc, Hcomm b c],
|
||
rewrite H₁
|
||
end
|
||
|
||
theorem foldl_eq_foldr : ∀ a l, foldl f a l = foldr f a l
|
||
| a nil := rfl
|
||
| a (b :: l) :=
|
||
begin
|
||
rewrite foldl_eq_of_comm_of_assoc,
|
||
esimp,
|
||
change f b (foldl f a l) = f b (foldr f a l),
|
||
rewrite foldl_eq_foldr
|
||
end
|
||
end foldl_eq_foldr
|
||
|
||
theorem foldl_append [simp] (f : B → A → B) : ∀ (b : B) (l₁ l₂ : list A), foldl f b (l₁++l₂) = foldl f (foldl f b l₁) l₂
|
||
| b [] l₂ := rfl
|
||
| b (a::l₁) l₂ := by rewrite [append_cons, *foldl_cons, foldl_append]
|
||
|
||
theorem foldr_append [simp] (f : A → B → B) : ∀ (b : B) (l₁ l₂ : list A), foldr f b (l₁++l₂) = foldr f (foldr f b l₂) l₁
|
||
| b [] l₂ := rfl
|
||
| b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append]
|
||
|
||
/- all & any -/
|
||
definition all (l : list A) (p : A → Prop) : Prop :=
|
||
foldr (λ a r, p a ∧ r) true l
|
||
|
||
definition any (l : list A) (p : A → Prop) : Prop :=
|
||
foldr (λ a r, p a ∨ r) false l
|
||
|
||
theorem all_nil_eq [simp] (p : A → Prop) : all [] p = true
|
||
|
||
theorem all_nil (p : A → Prop) : all [] p := trivial
|
||
|
||
theorem all_cons_eq (p : A → Prop) (a : A) (l : list A) : all (a::l) p = (p a ∧ all l p)
|
||
|
||
theorem all_cons {p : A → Prop} {a : A} {l : list A} (H1 : p a) (H2 : all l p) : all (a::l) p :=
|
||
and.intro H1 H2
|
||
|
||
theorem all_of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → all l p :=
|
||
assume h, by rewrite [all_cons_eq at h]; exact (and.elim_right h)
|
||
|
||
theorem of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → p a :=
|
||
assume h, by rewrite [all_cons_eq at h]; exact (and.elim_left h)
|
||
|
||
theorem all_cons_of_all {p : A → Prop} {a : A} {l : list A} : p a → all l p → all (a::l) p :=
|
||
assume pa alllp, and.intro pa alllp
|
||
|
||
theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q
|
||
| [] h₁ h₂ := trivial
|
||
| (a::l) h₁ h₂ :=
|
||
have all l q, from all_implies (all_of_all_cons h₁) h₂,
|
||
have q a, from h₂ a (of_all_cons h₁),
|
||
all_cons_of_all this `all l q`
|
||
|
||
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a
|
||
| [] h₁ h₂ := absurd h₁ !not_mem_nil
|
||
| (b::l) h₁ h₂ :=
|
||
or.elim (eq_or_mem_of_mem_cons h₁)
|
||
(suppose a = b,
|
||
by rewrite [all_cons_eq at h₂, -this at h₂]; exact (and.elim_left h₂))
|
||
(suppose a ∈ l,
|
||
have all l p, by rewrite [all_cons_eq at h₂]; exact (and.elim_right h₂),
|
||
of_mem_of_all `a ∈ l` this)
|
||
|
||
theorem all_of_forall {p : A → Prop} : ∀ {l}, (∀a, a ∈ l → p a) → all l p
|
||
| [] H := !all_nil
|
||
| (a::l) H := all_cons (H a !mem_cons)
|
||
(all_of_forall (λ a' H', H a' (mem_cons_of_mem _ H')))
|
||
|
||
theorem any_nil [simp] (p : A → Prop) : any [] p = false
|
||
|
||
theorem any_cons [simp] (p : A → Prop) (a : A) (l : list A) : any (a::l) p = (p a ∨ any l p)
|
||
|
||
theorem any_of_mem {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → p a → any l p
|
||
| [] i h := absurd i !not_mem_nil
|
||
| (b::l) i h :=
|
||
or.elim (eq_or_mem_of_mem_cons i)
|
||
(suppose a = b, by rewrite [-this]; exact (or.inl h))
|
||
(suppose a ∈ l,
|
||
have any l p, from any_of_mem this h,
|
||
or.inr this)
|
||
|
||
theorem exists_of_any {p : A → Prop} : ∀{l : list A}, any l p → ∃a, a ∈ l ∧ p a
|
||
| [] H := false.elim H
|
||
| (b::l) H := or.elim H
|
||
(assume H1 : p b, exists.intro b (and.intro !mem_cons H1))
|
||
(assume H1 : any l p,
|
||
obtain a (H2l : a ∈ l) (H2r : p a), from exists_of_any H1,
|
||
exists.intro a (and.intro (mem_cons_of_mem b H2l) H2r))
|
||
|
||
definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all l p)
|
||
| [] := decidable_true
|
||
| (a :: l) :=
|
||
match H a with
|
||
| inl Hp₁ :=
|
||
match decidable_all l with
|
||
| inl Hp₂ := inl (and.intro Hp₁ Hp₂)
|
||
| inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂)
|
||
end
|
||
| inr Hn := inr (not_and_of_not_left (all l p) Hn)
|
||
end
|
||
|
||
definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any l p)
|
||
| [] := decidable_false
|
||
| (a :: l) :=
|
||
match H a with
|
||
| inl Hp := inl (or.inl Hp)
|
||
| inr Hn₁ :=
|
||
match decidable_any l with
|
||
| inl Hp₂ := inl (or.inr Hp₂)
|
||
| inr Hn₂ := inr (not_or Hn₁ Hn₂)
|
||
end
|
||
end
|
||
|
||
/- zip & unzip -/
|
||
definition zip (l₁ : list A) (l₂ : list B) : list (A × B) :=
|
||
map₂ (λ a b, (a, b)) l₁ l₂
|
||
|
||
definition unzip : list (A × B) → list A × list B
|
||
| [] := ([], [])
|
||
| ((a, b) :: l) :=
|
||
match unzip l with
|
||
| (la, lb) := (a :: la, b :: lb)
|
||
end
|
||
|
||
theorem unzip_nil [simp] : unzip (@nil (A × B)) = ([], [])
|
||
|
||
theorem unzip_cons [simp] (a : A) (b : B) (l : list (A × B)) :
|
||
unzip ((a, b) :: l) = match unzip l with (la, lb) := (a :: la, b :: lb) end :=
|
||
rfl
|
||
|
||
theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l
|
||
| [] := rfl
|
||
| ((a, b) :: l) :=
|
||
begin
|
||
rewrite unzip_cons,
|
||
have r : zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l, from zip_unzip l,
|
||
revert r,
|
||
eapply prod.cases_on (unzip l),
|
||
intro la lb r,
|
||
rewrite -r
|
||
end
|
||
|
||
/- flat -/
|
||
definition flat (l : list (list A)) : list A :=
|
||
foldl append nil l
|
||
|
||
/- product -/
|
||
section product
|
||
|
||
definition product : list A → list B → list (A × B)
|
||
| [] l₂ := []
|
||
| (a::l₁) l₂ := map (λ b, (a, b)) l₂ ++ product l₁ l₂
|
||
|
||
theorem nil_product (l : list B) : product (@nil A) l = []
|
||
|
||
theorem product_cons (a : A) (l₁ : list A) (l₂ : list B)
|
||
: product (a::l₁) l₂ = map (λ b, (a, b)) l₂ ++ product l₁ l₂
|
||
|
||
theorem product_nil : ∀ (l : list A), product l (@nil B) = []
|
||
| [] := rfl
|
||
| (a::l) := by rewrite [product_cons, map_nil, product_nil]
|
||
|
||
theorem eq_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → a₁ = a :=
|
||
assume ain,
|
||
assert pr1 (a₁, b₁) ∈ map pr1 (map (λ b, (a, b)) l), from mem_map pr1 ain,
|
||
assert a₁ ∈ map (λb, a) l, by revert this; rewrite [map_map, ↑pr1]; intro this; assumption,
|
||
eq_of_map_const this
|
||
|
||
theorem mem_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → b₁ ∈ l :=
|
||
assume ain,
|
||
assert pr2 (a₁, b₁) ∈ map pr2 (map (λ b, (a, b)) l), from mem_map pr2 ain,
|
||
assert b₁ ∈ map (λx, x) l, by rewrite [map_map at this, ↑pr2 at this]; exact this,
|
||
by rewrite [map_id at this]; exact this
|
||
|
||
theorem mem_product {a : A} {b : B} : ∀ {l₁ l₂}, a ∈ l₁ → b ∈ l₂ → (a, b) ∈ product l₁ l₂
|
||
| [] l₂ h₁ h₂ := absurd h₁ !not_mem_nil
|
||
| (x::l₁) l₂ h₁ h₂ :=
|
||
or.elim (eq_or_mem_of_mem_cons h₁)
|
||
(assume aeqx : a = x,
|
||
assert (a, b) ∈ map (λ b, (a, b)) l₂, from mem_map _ h₂,
|
||
begin rewrite [-aeqx, product_cons], exact mem_append_left _ this end)
|
||
(assume ainl₁ : a ∈ l₁,
|
||
assert (a, b) ∈ product l₁ l₂, from mem_product ainl₁ h₂,
|
||
begin rewrite [product_cons], exact mem_append_right _ this end)
|
||
|
||
theorem mem_of_mem_product_left {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ product l₁ l₂ → a ∈ l₁
|
||
| [] l₂ h := absurd h !not_mem_nil
|
||
| (x::l₁) l₂ h :=
|
||
or.elim (mem_or_mem_of_mem_append h)
|
||
(suppose (a, b) ∈ map (λ b, (x, b)) l₂,
|
||
assert a = x, from eq_of_mem_map_pair₁ this,
|
||
by rewrite this; exact !mem_cons)
|
||
(suppose (a, b) ∈ product l₁ l₂,
|
||
have a ∈ l₁, from mem_of_mem_product_left this,
|
||
mem_cons_of_mem _ this)
|
||
|
||
theorem mem_of_mem_product_right {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ product l₁ l₂ → b ∈ l₂
|
||
| [] l₂ h := absurd h !not_mem_nil
|
||
| (x::l₁) l₂ h :=
|
||
or.elim (mem_or_mem_of_mem_append h)
|
||
(suppose (a, b) ∈ map (λ b, (x, b)) l₂,
|
||
mem_of_mem_map_pair₁ this)
|
||
(suppose (a, b) ∈ product l₁ l₂,
|
||
mem_of_mem_product_right this)
|
||
|
||
theorem length_product : ∀ (l₁ : list A) (l₂ : list B), length (product l₁ l₂) = length l₁ * length l₂
|
||
| [] l₂ := by rewrite [length_nil, zero_mul]
|
||
| (x::l₁) l₂ :=
|
||
assert length (product l₁ l₂) = length l₁ * length l₂, from length_product l₁ l₂,
|
||
by rewrite [product_cons, length_append, length_cons,
|
||
length_map, this, mul.right_distrib, one_mul, add.comm]
|
||
end product
|
||
|
||
-- new for list/comb dependent map theory
|
||
definition dinj₁ (p : A → Prop) (f : Π a, p a → B) := ∀ ⦃a1 a2⦄ (h1 : p a1) (h2 : p a2), a1 ≠ a2 → (f a1 h1) ≠ (f a2 h2)
|
||
definition dinj (p : A → Prop) (f : Π a, p a → B) := ∀ ⦃a1 a2⦄ (h1 : p a1) (h2 : p a2), (f a1 h1) = (f a2 h2) → a1 = a2
|
||
|
||
definition dmap (p : A → Prop) [h : decidable_pred p] (f : Π a, p a → B) : list A → list B
|
||
| [] := []
|
||
| (a::l) := if P : (p a) then cons (f a P) (dmap l) else (dmap l)
|
||
|
||
-- properties of dmap
|
||
section dmap
|
||
|
||
variable {p : A → Prop}
|
||
variable [h : decidable_pred p]
|
||
include h
|
||
variable {f : Π a, p a → B}
|
||
|
||
lemma dmap_nil : dmap p f [] = [] := rfl
|
||
lemma dmap_cons_of_pos {a : A} (P : p a) : ∀ l, dmap p f (a::l) = (f a P) :: dmap p f l :=
|
||
λ l, dif_pos P
|
||
lemma dmap_cons_of_neg {a : A} (P : ¬ p a) : ∀ l, dmap p f (a::l) = dmap p f l :=
|
||
λ l, dif_neg P
|
||
|
||
lemma mem_dmap : ∀ {l : list A} {a} (Pa : p a), a ∈ l → (f a Pa) ∈ dmap p f l
|
||
| [] := take a Pa Pinnil, by contradiction
|
||
| (a::l) := take b Pb Pbin, or.elim (eq_or_mem_of_mem_cons Pbin)
|
||
(assume Pbeqa, begin
|
||
rewrite [eq.symm Pbeqa, dmap_cons_of_pos Pb],
|
||
exact !mem_cons
|
||
end)
|
||
(assume Pbinl,
|
||
decidable.rec_on (h a)
|
||
(assume Pa, begin
|
||
rewrite [dmap_cons_of_pos Pa],
|
||
apply mem_cons_of_mem,
|
||
exact mem_dmap Pb Pbinl
|
||
end)
|
||
(assume nPa, begin
|
||
rewrite [dmap_cons_of_neg nPa],
|
||
exact mem_dmap Pb Pbinl
|
||
end))
|
||
|
||
lemma exists_of_mem_dmap : ∀ {l : list A} {b : B}, b ∈ dmap p f l → ∃ a P, a ∈ l ∧ b = f a P
|
||
| [] := take b, by rewrite dmap_nil; contradiction
|
||
| (a::l) := take b, decidable.rec_on (h a)
|
||
(assume Pa, begin
|
||
rewrite [dmap_cons_of_pos Pa, mem_cons_iff],
|
||
intro Pb, cases Pb with Peq Pin,
|
||
exact exists.intro a (exists.intro Pa (and.intro !mem_cons Peq)),
|
||
assert Pex : ∃ (a : A) (P : p a), a ∈ l ∧ b = f a P, exact exists_of_mem_dmap Pin,
|
||
cases Pex with a' Pex', cases Pex' with Pa' P',
|
||
exact exists.intro a' (exists.intro Pa' (and.intro (mem_cons_of_mem a (and.left P')) (and.right P')))
|
||
end)
|
||
(assume nPa, begin
|
||
rewrite [dmap_cons_of_neg nPa],
|
||
intro Pin,
|
||
assert Pex : ∃ (a : A) (P : p a), a ∈ l ∧ b = f a P, exact exists_of_mem_dmap Pin,
|
||
cases Pex with a' Pex', cases Pex' with Pa' P',
|
||
exact exists.intro a' (exists.intro Pa' (and.intro (mem_cons_of_mem a (and.left P')) (and.right P')))
|
||
end)
|
||
|
||
lemma map_dmap_of_inv_of_pos {g : B → A} (Pinv : ∀ a (Pa : p a), g (f a Pa) = a) :
|
||
∀ {l : list A}, (∀ ⦃a⦄, a ∈ l → p a) → map g (dmap p f l) = l
|
||
| [] := assume Pl, by rewrite [dmap_nil, map_nil]
|
||
| (a::l) := assume Pal,
|
||
assert Pa : p a, from Pal a !mem_cons,
|
||
assert Pl : ∀ a, a ∈ l → p a,
|
||
from take x Pxin, Pal x (mem_cons_of_mem a Pxin),
|
||
by rewrite [dmap_cons_of_pos Pa, map_cons, Pinv, map_dmap_of_inv_of_pos Pl]
|
||
|
||
lemma mem_of_dinj_of_mem_dmap (Pdi : dinj p f) :
|
||
∀ {l : list A} {a} (Pa : p a), (f a Pa) ∈ dmap p f l → a ∈ l
|
||
| [] := take a Pa Pinnil, by contradiction
|
||
| (b::l) := take a Pa Pmap,
|
||
decidable.rec_on (h b)
|
||
(λ Pb, begin
|
||
rewrite (dmap_cons_of_pos Pb) at Pmap,
|
||
rewrite mem_cons_iff at Pmap,
|
||
rewrite mem_cons_iff,
|
||
apply (or_of_or_of_imp_of_imp Pmap),
|
||
apply Pdi,
|
||
apply mem_of_dinj_of_mem_dmap Pa
|
||
end)
|
||
(λ nPb, begin
|
||
rewrite (dmap_cons_of_neg nPb) at Pmap,
|
||
apply mem_cons_of_mem,
|
||
exact mem_of_dinj_of_mem_dmap Pa Pmap
|
||
end)
|
||
|
||
lemma not_mem_dmap_of_dinj_of_not_mem (Pdi : dinj p f) {l : list A} {a} (Pa : p a) :
|
||
a ∉ l → (f a Pa) ∉ dmap p f l :=
|
||
not.mto (mem_of_dinj_of_mem_dmap Pdi Pa)
|
||
|
||
end dmap
|
||
|
||
section
|
||
open equiv
|
||
lemma list_equiv_of_equiv {A B : Type} : A ≃ B → list A ≃ list B
|
||
| (mk f g l r) :=
|
||
mk (map f) (map g)
|
||
begin intros, rewrite [map_map, id_of_left_inverse l, map_id] end
|
||
begin intros, rewrite [map_map, id_of_righ_inverse r, map_id] end
|
||
end
|
||
end list
|
||
|
||
attribute list.decidable_any [instance]
|
||
attribute list.decidable_all [instance]
|