lean2/library/data/nat/order.lean
2015-02-05 10:39:25 -08:00

479 lines
19 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.nat.order
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
The order relation on the natural numbers.
-/
import data.nat.basic algebra.ordered_ring
open eq.ops
namespace nat
/- lt and le -/
theorem le_of_lt_or_eq {m n : } (H : m < n m = n) : m ≤ n :=
or.elim H (take H1, le_of_lt H1) (take H1, H1 ▸ !le.refl)
theorem lt.by_cases {a b : } {P : Prop}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
or.elim !lt.trichotomy
(assume H, H1 H)
(assume H, or.elim H (assume H', H2 H') (assume H', H3 H'))
theorem lt_or_eq_of_le {m n : } (H : m ≤ n) : m < n m = n :=
lt.by_cases
(assume H1 : m < n, or.inl H1)
(assume H1 : m = n, or.inr H1)
(assume H1 : m > n, absurd (lt_of_le_of_lt H H1) !lt.irrefl)
theorem le_iff_lt_or_eq (m n : ) : m ≤ n ↔ m < n m = n :=
iff.intro lt_or_eq_of_le le_of_lt_or_eq
theorem lt_of_le_and_ne {m n : } (H1 : m ≤ n) (H2 : m ≠ n) : m < n :=
or.elim (lt_or_eq_of_le H1)
(take H3 : m < n, H3)
(take H3 : m = n, absurd H3 H2)
theorem lt_iff_le_and_ne (m n : ) : m < n ↔ m ≤ n ∧ m ≠ n :=
iff.intro
(take H, and.intro (le_of_lt H) (take H1, lt.irrefl _ (H1 ▸ H)))
(take H, lt_of_le_and_ne (and.elim_left H) (and.elim_right H))
theorem le_add_right (n k : ) : n ≤ n + k :=
induction_on k
(calc n ≤ n : le.refl n
... = n + zero : add_zero)
(λ k (ih : n ≤ n + k), calc
n ≤ succ (n + k) : le_succ_of_le ih
... = n + succ k : add_succ)
theorem le_add_left (n m : ): n ≤ m + n :=
!add.comm ▸ !le_add_right
theorem le.intro {n m k : } (h : n + k = m) : n ≤ m :=
h ▸ le_add_right n k
theorem le.elim {n m : } (h : n ≤ m) : ∃k, n + k = m :=
le.rec_on h
(exists.intro 0 rfl)
(λ m (h : n < m), lt.rec_on h
(exists.intro 1 rfl)
(λ b hlt (ih : ∃ (k : ), n + k = b),
obtain (k : ) (h : n + k = b), from ih,
exists.intro (succ k) (calc
n + succ k = succ (n + k) : add_succ
... = succ b : h)))
theorem le.total {m n : } : m ≤ n n ≤ m :=
lt.by_cases
(assume H : m < n, or.inl (le_of_lt H))
(assume H : m = n, or.inl (H ▸ !le.refl))
(assume H : m > n, or.inr (le_of_lt H))
/- addition -/
theorem add_le_add_left {n m : } (H : n ≤ m) (k : ) : k + n ≤ k + m :=
obtain (l : ) (Hl : n + l = m), from le.elim H,
le.intro
(calc
k + n + l = k + (n + l) : !add.assoc
... = k + m : {Hl})
theorem add_le_add_right {n m : } (H : n ≤ m) (k : ) : n + k ≤ m + k :=
!add.comm ▸ !add.comm ▸ add_le_add_left H k
theorem le_of_add_le_add_left {k n m : } (H : k + n ≤ k + m) : n ≤ m :=
obtain (l : ) (Hl : k + n + l = k + m), from (le.elim H),
le.intro (add.cancel_left
(calc
k + (n + l) = k + n + l : (!add.assoc)⁻¹
... = k + m : Hl))
theorem add_lt_add_left {n m : } (H : n < m) (k : ) : k + n < k + m :=
lt_of_succ_le (!add_succ ▸ add_le_add_left (succ_le_of_lt H) k)
theorem add_lt_add_right {n m : } (H : n < m) (k : ) : n + k < m + k :=
!add.comm ▸ !add.comm ▸ add_lt_add_left H k
theorem lt_add_of_pos_right {n k : } (H : k > 0) : n < n + k :=
!add_zero ▸ add_lt_add_left H n
/- multiplication -/
theorem mul_le_mul_left {n m : } (H : n ≤ m) (k : ) : k * n ≤ k * m :=
obtain (l : ) (Hl : n + l = m), from le.elim H,
have H2 : k * n + k * l = k * m, by rewrite ⟨-mul.left_distrib, Hl⟩,
le.intro H2
theorem mul_le_mul_right {n m : } (H : n ≤ m) (k : ) : n * k ≤ m * k :=
!mul.comm ▸ !mul.comm ▸ (mul_le_mul_left H k)
theorem mul_le_mul {n m k l : } (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l :=
le.trans (mul_le_mul_right H1 m) (mul_le_mul_left H2 k)
theorem mul_lt_mul_of_pos_left {n m k : } (H : n < m) (Hk : k > 0) : k * n < k * m :=
have H2 : k * n < k * n + k, from lt_add_of_pos_right Hk,
have H3 : k * n + k ≤ k * m, from !mul_succ ▸ mul_le_mul_left (succ_le_of_lt H) k,
lt_of_lt_of_le H2 H3
theorem mul_lt_mul_of_pos_right {n m k : } (H : n < m) (Hk : k > 0) : n * k < m * k :=
!mul.comm ▸ !mul.comm ▸ mul_lt_mul_of_pos_left H Hk
theorem le.antisymm {n m : } (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
obtain (k : ) (Hk : n + k = m), from (le.elim H1),
obtain (l : ) (Hl : m + l = n), from (le.elim H2),
have L1 : k + l = 0, from
add.cancel_left
(calc
n + (k + l) = n + k + l : (!add.assoc)⁻¹
... = m + l : {Hk}
... = n : Hl
... = n + 0 : (!add_zero)⁻¹),
have L2 : k = 0, from eq_zero_of_add_eq_zero_right L1,
calc
n = n + 0 : (!add_zero)⁻¹
... = n + k : {L2⁻¹}
... = m : Hk
theorem zero_le (n : ) : 0 ≤ n :=
le.intro !zero_add
/- nat is an instance of a linearly ordered semiring -/
section
open [classes] algebra
protected definition linear_ordered_semiring [instance] [reducible] :
algebra.linear_ordered_semiring nat :=
⦃ algebra.linear_ordered_semiring, nat.comm_semiring,
add_left_cancel := @add.cancel_left,
add_right_cancel := @add.cancel_right,
lt := lt,
le := le,
le_refl := le.refl,
le_trans := @le.trans,
le_antisymm := @le.antisymm,
le_total := @le.total,
le_iff_lt_or_eq := @le_iff_lt_or_eq,
lt_iff_le_ne := lt_iff_le_and_ne,
add_le_add_left := @add_le_add_left,
le_of_add_le_add_left := @le_of_add_le_add_left,
mul_le_mul_of_nonneg_left := (take a b c H1 H2, mul_le_mul_left H1 c),
mul_le_mul_of_nonneg_right := (take a b c H1 H2, mul_le_mul_right H1 c),
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left,
mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right ⦄
end
section port_algebra
theorem ge_of_eq_of_ge : ∀{a b c : }, a = b → b ≥ c → a ≥ c := @algebra.ge_of_eq_of_ge _ _
theorem ge_of_ge_of_eq : ∀{a b c : }, a ≥ b → b = c → a ≥ c := @algebra.ge_of_ge_of_eq _ _
theorem gt_of_eq_of_gt : ∀{a b c : }, a = b → b > c → a > c := @algebra.gt_of_eq_of_gt _ _
theorem gt_of_gt_of_eq : ∀{a b c : }, a > b → b = c → a > c := @algebra.gt_of_gt_of_eq _ _
theorem ge.trans: ∀{a b c : }, a ≥ b → b ≥ c → a ≥ c := @algebra.ge.trans _ _
theorem gt.trans: ∀{a b c : }, a ≥ b → b ≥ c → a ≥ c := @algebra.ge.trans _ _
theorem gt_of_gt_of_ge : ∀{a b c : }, a > b → b ≥ c → a > c := @algebra.gt_of_gt_of_ge _ _
theorem gt_of_ge_of_gt : ∀{a b c : }, a ≥ b → b > c → a > c := @algebra.gt_of_ge_of_gt _ _
calc_trans ge_of_eq_of_ge
calc_trans ge_of_ge_of_eq
calc_trans gt_of_eq_of_gt
calc_trans gt_of_gt_of_eq
theorem ne_of_lt : ∀{a b : }, a < b → a ≠ b := @algebra.ne_of_lt _ _
theorem lt_of_le_of_ne : ∀{a b : }, a ≤ b → a ≠ b → a < b :=
@algebra.lt_of_le_of_ne _ _
theorem not_le_of_lt : ∀{a b : }, a < b → ¬ b ≤ a := @algebra.not_le_of_lt _ _
theorem not_lt_of_le : ∀{a b : }, a ≤ b → ¬ b < a := @algebra.not_lt_of_le _ _
theorem le_of_not_lt : ∀{a b : }, ¬ a < b → b ≤ a := @algebra.le_of_not_lt _ _
theorem lt_of_not_le : ∀{a b : }, ¬ a ≤ b → b < a := @algebra.lt_of_not_le _ _
theorem lt_or_ge : ∀a b : , a < b a ≥ b := @algebra.lt_or_ge _ _
theorem le_or_gt : ∀a b : , a ≤ b a > b := @algebra.le_or_gt _ _
theorem lt_or_gt_of_ne : ∀{a b : }, a ≠ b → a < b a > b := @algebra.lt_or_gt_of_ne _ _
theorem add_le_add : ∀{a b c d : }, a ≤ b → c ≤ d → a + c ≤ b + d := @algebra.add_le_add _ _
theorem add_lt_add : ∀{a b c d : }, a < b → c < d → a + c < b + d := @algebra.add_lt_add _ _
theorem add_lt_add_of_le_of_lt : ∀{a b c d : }, a ≤ b → c < d → a + c < b + d :=
@algebra.add_lt_add_of_le_of_lt _ _
theorem add_lt_add_of_lt_of_le : ∀{a b c d : }, a < b → c ≤ d → a + c < b + d :=
@algebra.add_lt_add_of_lt_of_le _ _
theorem lt_add_of_pos_left : ∀{a b : }, b > 0 → a < b + a := @algebra.lt_add_of_pos_left _ _
theorem le_of_add_le_add_right : ∀{a b c : }, a + b ≤ c + b → a ≤ c :=
@algebra.le_of_add_le_add_right _ _
theorem lt_of_add_lt_add_left : ∀{a b c : }, a + b < a + c → b < c :=
@algebra.lt_of_add_lt_add_left _ _
theorem lt_of_add_lt_add_right : ∀{a b c : }, a + b < c + b → a < c :=
@algebra.lt_of_add_lt_add_right _ _
theorem add_le_add_left_iff : ∀a b c : , a + b ≤ a + c ↔ b ≤ c := algebra.add_le_add_left_iff
theorem add_le_add_right_iff : ∀a b c : , a + b ≤ c + b ↔ a ≤ c := algebra.add_le_add_right_iff
theorem add_lt_add_left_iff : ∀a b c : , a + b < a + c ↔ b < c := algebra.add_lt_add_left_iff
theorem add_lt_add_right_iff : ∀a b c : , a + b < c + b ↔ a < c := algebra.add_lt_add_right_iff
theorem add_pos_left : ∀{a : }, 0 < a → ∀b : , 0 < a + b :=
take a H b, @algebra.add_pos_of_pos_of_nonneg _ _ a b H !zero_le
theorem add_pos_right : ∀{a : }, 0 < a → ∀b : , 0 < b + a :=
take a H b, !add.comm ▸ add_pos_left H b
theorem add_eq_zero_iff_eq_zero_and_eq_zero : ∀{a b : },
a + b = 0 ↔ a = 0 ∧ b = 0 :=
take a b : ,
@algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le
theorem le_add_of_le_left : ∀{a b c : }, b ≤ c → b ≤ a + c :=
take a b c H, @algebra.le_add_of_nonneg_of_le _ _ a b c !zero_le H
theorem le_add_of_le_right : ∀{a b c : }, b ≤ c → b ≤ c + a :=
take a b c H, @algebra.le_add_of_le_of_nonneg _ _ a b c H !zero_le
theorem lt_add_of_pos_of_le : ∀{a b c : }, 0 < a → b ≤ c → b < a + c :=
@algebra.lt_add_of_pos_of_le _ _
theorem lt_add_of_le_of_pos : ∀{a b c : }, b ≤ c → 0 < a → b < c + a :=
@algebra.lt_add_of_le_of_pos _ _
theorem lt_add_of_lt_left : ∀{b c : }, b < c → ∀a, b < a + c :=
take b c H a, @algebra.lt_add_of_nonneg_of_lt _ _ a b c !zero_le H
theorem lt_add_of_lt_right : ∀{b c : }, b < c → ∀a, b < c + a :=
take b c H a, @algebra.lt_add_of_lt_of_nonneg _ _ a b c H !zero_le
theorem lt_add_of_pos_of_lt : ∀{a b c : }, 0 < a → b < c → b < a + c :=
@algebra.lt_add_of_pos_of_lt _ _
theorem lt_add_of_lt_of_pos : ∀{a b c : }, b < c → 0 < a → b < c + a :=
@algebra.lt_add_of_lt_of_pos _ _
theorem mul_pos : ∀{a b : }, 0 < a → 0 < b → 0 < a * b := @algebra.mul_pos _ _
theorem lt_of_mul_lt_mul_left : ∀{a b c : }, c * a < c * b → a < b :=
take a b c H, @algebra.lt_of_mul_lt_mul_left _ _ a b c H !zero_le
theorem lt_of_mul_lt_mul_right : ∀{a b c : }, a * c < b * c → a < b :=
take a b c H, @algebra.lt_of_mul_lt_mul_right _ _ a b c H !zero_le
theorem le_of_mul_le_mul_left : ∀{a b c : }, c * a ≤ c * b → c > 0 → a ≤ b :=
@algebra.le_of_mul_le_mul_left _ _
theorem le_of_mul_le_mul_right : ∀{a b c : }, a * c ≤ b * c → c > 0 → a ≤ b :=
@algebra.le_of_mul_le_mul_right _ _
theorem pos_of_mul_pos_left : ∀{a b : }, 0 < a * b → 0 < b :=
take a b H, @algebra.pos_of_mul_pos_left _ _ a b H !zero_le
theorem pos_of_mul_pos_right : ∀{a b : }, 0 < a * b → 0 < a :=
take a b H, @algebra.pos_of_mul_pos_right _ _ a b H !zero_le
end port_algebra
theorem zero_le_one : 0 ≤ 1 := dec_trivial
theorem zero_lt_one : 0 < 1 := dec_trivial
/- properties specific to nat -/
theorem lt_intro {n m k : } (H : succ n + k = m) : n < m :=
lt_of_succ_le (le.intro H)
theorem lt_elim {n m : } (H : n < m) : ∃k, succ n + k = m :=
le.elim (succ_le_of_lt H)
theorem lt_add_succ (n m : ) : n < n + succ m :=
lt_intro !succ_add_eq_add_succ
theorem eq_zero_of_le_zero {n : } (H : n ≤ 0) : n = 0 :=
obtain (k : ) (Hk : n + k = 0), from le.elim H,
eq_zero_of_add_eq_zero_right Hk
/- succ and pred -/
theorem lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n :=
iff.intro succ_le_of_lt lt_of_succ_le
theorem not_succ_le_zero (n : ) : ¬ succ n ≤ 0 :=
(assume H : succ n ≤ 0,
have H2 : succ n = 0, from eq_zero_of_le_zero H,
absurd H2 !succ_ne_zero)
theorem succ_le_succ {n m : } (H : n ≤ m) : succ n ≤ succ m :=
!add_one ▸ !add_one ▸ add_le_add_right H 1
theorem le_of_succ_le_succ {n m : } (H : succ n ≤ succ m) : n ≤ m :=
le_of_add_le_add_right ((!add_one)⁻¹ ▸ (!add_one)⁻¹ ▸ H)
theorem self_le_succ (n : ) : n ≤ succ n :=
le.intro !add_one
theorem succ_le_or_eq_of_le {n m : } (H : n ≤ m) : succ n ≤ m n = m :=
or.elim (lt_or_eq_of_le H)
(assume H1 : n < m, or.inl (succ_le_of_lt H1))
(assume H1 : n = m, or.inr H1)
theorem le_succ_of_pred_le {n m : } : pred n ≤ m → n ≤ succ m :=
nat.cases_on n
(assume H : pred 0 ≤ m, !zero_le)
(take n',
assume H : pred (succ n') ≤ m,
have H1 : n' ≤ m, from pred_succ n' ▸ H,
succ_le_succ H1)
theorem pred_le_of_le_succ {n m : } : n ≤ succ m → pred n ≤ m :=
nat.cases_on n
(assume H, !pred_zero⁻¹ ▸ zero_le m)
(take n',
assume H : succ n' ≤ succ m,
have H1 : n' ≤ m, from le_of_succ_le_succ H,
!pred_succ⁻¹ ▸ H1)
theorem succ_le_of_le_pred {n m : } : succ n ≤ m → n ≤ pred m :=
nat.cases_on m
(assume H, absurd H !not_succ_le_zero)
(take m',
assume H : succ n ≤ succ m',
have H1 : n ≤ m', from le_of_succ_le_succ H,
!pred_succ⁻¹ ▸ H1)
theorem pred_le_pred_of_le {n m : } : n ≤ m → pred n ≤ pred m :=
nat.cases_on n
(assume H, pred_zero⁻¹ ▸ zero_le (pred m))
(take n',
assume H : succ n' ≤ m,
!pred_succ⁻¹ ▸ succ_le_of_le_pred H)
theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m :=
lt_of_not_le
(take H1 : m ≤ n,
not_lt_of_le (pred_le_pred_of_le H1) H)
theorem le_or_eq_succ_of_le_succ {n m : } (H : n ≤ succ m) : n ≤ m n = succ m :=
or_of_or_of_imp_left (succ_le_or_eq_of_le H)
(take H2 : succ n ≤ succ m, show n ≤ m, from le_of_succ_le_succ H2)
theorem le_pred_self (n : ) : pred n ≤ n :=
cases_on n
(pred_zero⁻¹ ▸ !le.refl)
(take k : , (!pred_succ)⁻¹ ▸ !self_le_succ)
theorem succ_pos (n : ) : 0 < succ n :=
!zero_lt_succ
theorem succ_pred_of_pos {n : } (H : n > 0) : succ (pred n) = n :=
(or_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹
theorem exists_eq_succ_of_lt {n m : } (H : n < m) : exists k, m = succ k :=
discriminate
(take (Hm : m = 0), absurd (Hm ▸ H) !not_lt_zero)
(take (l : ) (Hm : m = succ l), exists.intro l Hm)
theorem self_lt_succ (n : ) : n < succ n :=
lt.base n
theorem le_of_lt_succ {n m : } (H : n < succ m) : n ≤ m :=
le_of_succ_le_succ (succ_le_of_lt H)
/- other forms of induction -/
protected theorem strong_induction_on {P : nat → Prop} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) :
P n :=
have H1 : ∀ {n m : nat}, m < n → P m, from
take n,
induction_on n
(show ∀m, m < 0 → P m, from take m H, absurd H !not_lt_zero)
(take n',
assume IH : ∀ {m : nat}, m < n' → P m,
have H2: P n', from H n' @IH,
show ∀m, m < succ n' → P m, from
take m,
assume H3 : m < succ n',
or.elim (lt_or_eq_of_le (le_of_lt_succ H3))
(assume H4: m < n', IH H4)
(assume H4: m = n', H4⁻¹ ▸ H2)),
H1 !self_lt_succ
protected theorem case_strong_induction_on {P : nat → Prop} (a : nat) (H0 : P 0)
(Hind : ∀(n : nat), (∀m, m ≤ n → P m) → P (succ n)) : P a :=
strong_induction_on a (
take n,
show (∀m, m < n → P m) → P n, from
cases_on n
(assume H : (∀m, m < 0 → P m), show P 0, from H0)
(take n,
assume H : (∀m, m < succ n → P m),
show P (succ n), from
Hind n (take m, assume H1 : m ≤ n, H _ (lt_succ_of_le H1))))
/- pos -/
theorem by_cases_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀ {y : nat}, y > 0 → P y) : P y :=
cases_on y H0 (take y, H1 !succ_pos)
theorem eq_zero_or_pos (n : ) : n = 0 n > 0 :=
or_of_or_of_imp_left
(or.swap (lt_or_eq_of_le !zero_le))
(take H : 0 = n, H⁻¹)
theorem pos_of_ne_zero {n : } (H : n ≠ 0) : n > 0 :=
or.elim !eq_zero_or_pos (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2)
theorem ne_zero_of_pos {n : } (H : n > 0) : n ≠ 0 :=
ne.symm (ne_of_lt H)
theorem exists_eq_succ_of_pos {n : } (H : n > 0) : exists l, n = succ l :=
exists_eq_succ_of_lt H
theorem pos_of_dvd_of_pos {m n : } (H1 : m | n) (H2 : n > 0) : m > 0 :=
pos_of_ne_zero
(assume H3 : m = 0,
have H4 : n = 0, from eq_zero_of_zero_dvd (H3 ▸ H1),
ne_of_lt H2 H4⁻¹)
/- multiplication -/
theorem mul_lt_mul_of_le_of_lt {n m k l : } (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) :
n * m < k * l :=
lt_of_le_of_lt (mul_le_mul_right H1 m) (mul_lt_mul_of_pos_left H2 Hk)
theorem mul_lt_mul_of_lt_of_le {n m k l : } (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) :
n * m < k * l :=
lt_of_le_of_lt (mul_le_mul_left H2 n) (mul_lt_mul_of_pos_right H1 Hl)
theorem mul_lt_mul_of_le_of_le {n m k l : } (H1 : n < k) (H2 : m < l) : n * m < k * l :=
have H3 : n * m ≤ k * m, from mul_le_mul_right (le_of_lt H1) m,
have H4 : k * m < k * l, from mul_lt_mul_of_pos_left H2 (lt_of_le_of_lt !zero_le H1),
lt_of_le_of_lt H3 H4
theorem eq_of_mul_eq_mul_left {m k n : } (Hn : n > 0) (H : n * m = n * k) : m = k :=
have H2 : n * m ≤ n * k, from H ▸ !le.refl,
have H3 : n * k ≤ n * m, from H ▸ !le.refl,
have H4 : m ≤ k, from le_of_mul_le_mul_left H2 Hn,
have H5 : k ≤ m, from le_of_mul_le_mul_left H3 Hn,
le.antisymm H4 H5
theorem eq_of_mul_eq_mul_right {n m k : } (Hm : m > 0) (H : n * m = k * m) : n = k :=
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
theorem eq_zero_or_eq_of_mul_eq_mul_left {n m k : } (H : n * m = n * k) : n = 0 m = k :=
or_of_or_of_imp_right !eq_zero_or_pos
(assume Hn : n > 0, eq_of_mul_eq_mul_left Hn H)
theorem eq_zero_or_eq_of_mul_eq_mul_right {n m k : } (H : n * m = k * m) : m = 0 n = k :=
eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H)
theorem eq_one_of_mul_eq_one_right {n m : } (H : n * m = 1) : n = 1 :=
have H2 : n * m > 0, from H⁻¹ ▸ !succ_pos,
have H3 : n > 0, from pos_of_mul_pos_right H2,
have H4 : m > 0, from pos_of_mul_pos_left H2,
or.elim (le_or_gt n 1)
(assume H5 : n ≤ 1,
show n = 1, from le.antisymm H5 (succ_le_of_lt H3))
(assume H5 : n > 1,
have H6 : n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt H4),
have H7 : 1 ≥ 2, from !mul_one ▸ H ▸ H6,
absurd !self_lt_succ (not_lt_of_le H7))
theorem eq_one_of_mul_eq_one_left {n m : } (H : n * m = 1) : m = 1 :=
eq_one_of_mul_eq_one_right (!mul.comm ▸ H)
theorem eq_one_of_mul_eq_self_left {n m : } (Hpos : n > 0) (H : m * n = n) : m = 1 :=
eq_of_mul_eq_mul_right Hpos (H ⬝ !one_mul⁻¹)
theorem eq_one_of_mul_eq_self_right {n m : } (Hpos : m > 0) (H : m * n = m) : n = 1 :=
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
theorem eq_one_of_dvd_one {n : } (H : n | 1) : n = 1 :=
dvd.elim H
(take m,
assume H1 : 1 = n * m,
eq_one_of_mul_eq_one_right H1⁻¹)
end nat