lean2/hott/algebra/homotopy_group.hlean
Floris van Doorn 3213b1b3b0 feat(EM): Prove some corollaries of Whitehead's principle, and prove that K(G,1) is unique.
Also reorder the arguments of is_equiv_compose
2016-07-09 10:20:22 -07:00

272 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
homotopy groups of a pointed space
-/
import .trunc_group types.trunc .group_theory
open nat eq pointed trunc is_trunc algebra group function equiv unit is_equiv
-- TODO: consistently make n an argument before A
namespace eq
definition phomotopy_group [reducible] [constructor] (n : ) (A : Type*) : Set* :=
ptrunc 0 (Ω[n] A)
definition homotopy_group [reducible] (n : ) (A : Type*) : Type :=
phomotopy_group n A
notation `π*[`:95 n:0 `] `:0 := phomotopy_group n
notation `π[`:95 n:0 `] `:0 := homotopy_group n
definition group_homotopy_group [instance] [constructor] [reducible] (n : ) (A : Type*)
: group (π[succ n] A) :=
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
definition group_homotopy_group2 [instance] (k : ) (A : Type*) :
group (carrier (ptrunctype.to_pType (π*[k + 1] A))) :=
group_homotopy_group k A
definition comm_group_homotopy_group [constructor] [reducible] (n : ) (A : Type*)
: comm_group (π[succ (succ n)] A) :=
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
local attribute comm_group_homotopy_group [instance]
definition ghomotopy_group [constructor] (n : ) (A : Type*) : Group :=
Group.mk (π[succ n] A) _
definition cghomotopy_group [constructor] (n : ) (A : Type*) : CommGroup :=
CommGroup.mk (π[succ (succ n)] A) _
definition fundamental_group [constructor] (A : Type*) : Group :=
ghomotopy_group zero A
notation `πg[`:95 n:0 ` +1] `:0 A:95 := ghomotopy_group n A
notation `πag[`:95 n:0 ` +2] `:0 A:95 := cghomotopy_group n A
notation `π₁` := fundamental_group -- should this be notation for the group or pointed type?
definition tr_mul_tr {n : } {A : Type*} (p q : Ω[n + 1] A) :
tr p *[πg[n+1] A] tr q = tr (p ⬝ q) :=
by reflexivity
definition tr_mul_tr' {n : } {A : Type*} (p q : Ω[succ n] A)
: tr p *[π[succ n] A] tr q = tr (p ⬝ q) :=
idp
definition phomotopy_group_pequiv [constructor] (n : ) {A B : Type*} (H : A ≃* B)
: π*[n] A ≃* π*[n] B :=
ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn n H)
definition phomotopy_group_pequiv_loop_ptrunc [constructor] (k : ) (A : Type*) :
π*[k] A ≃* Ω[k] (ptrunc k A) :=
begin
refine !iterated_loop_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end)
end
open trunc_index
definition phomotopy_group_ptrunc_of_le [constructor] {k n : } (H : k ≤ n) (A : Type*) :
π*[k] (ptrunc n A) ≃* π*[k] A :=
calc
π*[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A))
: phomotopy_group_pequiv_loop_ptrunc k (ptrunc n A)
... ≃* Ω[k] (ptrunc k A)
: loopn_pequiv_loopn k (ptrunc_ptrunc_pequiv_left A (of_nat_le_of_nat H))
... ≃* π*[k] A : (phomotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
definition phomotopy_group_ptrunc [constructor] (k : ) (A : Type*) :
π*[k] (ptrunc k A) ≃* π*[k] A :=
phomotopy_group_ptrunc_of_le (le.refl k) A
theorem trivial_homotopy_of_is_set (A : Type*) [H : is_set A] (n : ) : πg[n+1] A ≃g G0 :=
begin
apply trivial_group_of_is_contr,
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply is_trunc_succ_succ_of_is_set
end
definition phomotopy_group_succ_out (A : Type*) (n : ) : π*[n + 1] A = π₁ Ω[n] A := idp
definition phomotopy_group_succ_in (A : Type*) (n : ) : π*[n + 1] A = π*[n] (Ω A) :> Type* :=
ap (ptrunc 0) (loop_space_succ_eq_in A n)
definition ghomotopy_group_succ_out (A : Type*) (n : ) : πg[n +1] A = π₁ Ω[n] A := idp
definition phomotopy_group_succ_in_con {A : Type*} {n : } (g h : πg[succ n +1] A) :
pcast (phomotopy_group_succ_in A (succ n)) (g * h) =
pcast (phomotopy_group_succ_in A (succ n)) g *
pcast (phomotopy_group_succ_in A (succ n)) h :=
begin
induction g with p, induction h with q, esimp,
rewrite [-+ tr_eq_cast_ap, ↑phomotopy_group_succ_in, -+ tr_compose],
refine ap (transport _ _) !tr_mul_tr' ⬝ _,
rewrite [+ trunc_transport],
apply ap tr, apply loop_space_succ_eq_in_concat,
end
definition ghomotopy_group_succ_in (A : Type*) (n : ) : πg[succ n +1] A ≃g πg[n +1] Ω A :=
begin
fapply isomorphism_of_equiv,
{ apply equiv_of_eq, exact ap (ptrunc 0) (loop_space_succ_eq_in A (succ n))},
{ exact abstract [irreducible] begin refine trunc.rec _, intro p, refine trunc.rec _, intro q,
rewrite [▸*,-+tr_eq_cast_ap, +trunc_transport], refine !trunc_transport ⬝ _, apply ap tr,
apply loop_space_succ_eq_in_concat end end},
end
definition phomotopy_group_functor [constructor] (n : ) {A B : Type*} (f : A →* B)
: π*[n] A →* π*[n] B :=
ptrunc_functor 0 (apn n f)
definition homotopy_group_functor (n : ) {A B : Type*} (f : A →* B) : π[n] A → π[n] B :=
phomotopy_group_functor n f
notation `π→*[`:95 n:0 `] `:0 := phomotopy_group_functor n
notation `π→[`:95 n:0 `] `:0 := homotopy_group_functor n
definition phomotopy_group_functor_phomotopy [constructor] (n : ) {A B : Type*} {f g : A →* B}
(p : f ~* g) : π→*[n] f ~* π→*[n] g :=
ptrunc_functor_phomotopy 0 (apn_phomotopy n p)
definition phomotopy_group_functor_compose [constructor] (n : ) {A B C : Type*} (g : B →* C)
(f : A →* B) : π→*[n] (g ∘* f) ~* π→*[n] g ∘* π→*[n] f :=
ptrunc_functor_phomotopy 0 !apn_compose ⬝* !ptrunc_functor_pcompose
definition is_equiv_homotopy_group_functor [constructor] (n : ) {A B : Type*} (f : A →* B)
[is_equiv f] : is_equiv (π→[n] f) :=
@(is_equiv_trunc_functor 0 _) !is_equiv_apn
definition phomotopy_group_functor_succ_phomotopy_in (n : ) {A B : Type*} (f : A →* B) :
pcast (phomotopy_group_succ_in B n) ∘* π→*[n + 1] f ~*
π→*[n] (Ω→ f) ∘* pcast (phomotopy_group_succ_in A n) :=
begin
refine pwhisker_right _ (pcast_ptrunc 0 (loop_space_succ_eq_in B n)) ⬝* _,
refine _ ⬝* pwhisker_left _ (pcast_ptrunc 0 (loop_space_succ_eq_in A n))⁻¹*,
refine !ptrunc_functor_pcompose⁻¹* ⬝* _ ⬝* !ptrunc_functor_pcompose,
exact ptrunc_functor_phomotopy 0 (apn_succ_phomotopy_in n f)
end
definition is_equiv_phomotopy_group_functor_ap1 (n : ) {A B : Type*} (f : A →* B)
[is_equiv (π→*[n + 1] f)] : is_equiv (π→*[n] (Ω→ f)) :=
have is_equiv (pcast (phomotopy_group_succ_in B n) ∘* π→*[n + 1] f),
from is_equiv_compose _ (π→*[n + 1] f),
have is_equiv (π→*[n] (Ω→ f) ∘ pcast (phomotopy_group_succ_in A n)),
from is_equiv.homotopy_closed _ (phomotopy_group_functor_succ_phomotopy_in n f),
is_equiv.cancel_right (pcast (phomotopy_group_succ_in A n)) _
definition tinverse [constructor] {X : Type*} : π*[1] X →* π*[1] X :=
ptrunc_functor 0 pinverse
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
definition ptrunc_functor_pinverse [constructor] {X : Type*}
: ptrunc_functor 0 (@pinverse X) ~* @tinverse X :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ reflexivity}
end
definition phomotopy_group_functor_mul [constructor] (n : ) {A B : Type*} (g : A →* B)
(p q : πg[n+1] A) :
(π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n + 1] g) p *[πg[n+1] B] (π→[n + 1] g) q :=
begin
unfold [ghomotopy_group, homotopy_group] at *,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ p, clear p, intro p,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ q, clear q, intro q,
apply ap tr, apply apn_con
end
definition homotopy_group_homomorphism [constructor] (n : ) {A B : Type*} (f : A →* B)
: πg[n+1] A →g πg[n+1] B :=
begin
fconstructor,
{ exact phomotopy_group_functor (n+1) f},
{ apply phomotopy_group_functor_mul}
end
definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ) {A B : Type*} (f : A ≃* B)
: πg[n+1] A ≃g πg[n+1] B :=
begin
apply isomorphism.mk (homotopy_group_homomorphism n f),
esimp, apply is_equiv_trunc_functor, apply is_equiv_apn,
end
definition homotopy_group_add (A : Type*) (n m : ) : πg[n+m +1] A ≃g πg[n +1] Ω[m] A :=
begin
revert A, induction m with m IH: intro A,
{ reflexivity},
{ esimp [iterated_ploop_space, nat.add], refine !ghomotopy_group_succ_in ⬝g _, refine !IH ⬝g _,
apply homotopy_group_isomorphism_of_pequiv,
exact pequiv_of_eq !loop_space_succ_eq_in⁻¹}
end
theorem trivial_homotopy_add_of_is_set_loop_space {A : Type*} {n : } (m : )
(H : is_set (Ω[n] A)) : πg[m+n+1] A ≃g G0 :=
!homotopy_group_add ⬝g !trivial_homotopy_of_is_set
theorem trivial_homotopy_le_of_is_set_loop_space {A : Type*} {n : } (m : ) (H1 : n ≤ m)
(H2 : is_set (Ω[n] A)) : πg[m+1] A ≃g G0 :=
obtain (k : ) (p : n + k = m), from le.elim H1,
isomorphism_of_eq (ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k)) ⬝g
trivial_homotopy_add_of_is_set_loop_space k H2
definition phomotopy_group_pequiv_loop_ptrunc_con {k : } {A : Type*} (p q : πg[k +1] A) :
phomotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
phomotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
phomotopy_group_pequiv_loop_ptrunc (succ k) A q :=
begin
refine _ ⬝ !loopn_pequiv_loopn_con,
exact ap (loopn_pequiv_loopn _ _) !iterated_loop_ptrunc_pequiv_inv_con
end
definition phomotopy_group_pequiv_loop_ptrunc_inv_con {k : } {A : Type*}
(p q : Ω[succ k] (ptrunc (succ k) A)) :
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
(phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
inv_preserve_binary (phomotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
(@phomotopy_group_pequiv_loop_ptrunc_con k A) p q
definition ghomotopy_group_ptrunc [constructor] (k : ) (A : Type*) :
πg[k+1] (ptrunc (k+1) A) ≃g πg[k+1] A :=
begin
fapply isomorphism_of_equiv,
{ exact phomotopy_group_ptrunc (k+1) A},
{ intro g₁ g₂, esimp,
refine _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_inv_con,
apply ap ((phomotopy_group_pequiv_loop_ptrunc (k+1) A)⁻¹ᵉ*),
refine _ ⬝ !loopn_pequiv_loopn_con ,
apply ap (loopn_pequiv_loopn (k+1) _),
apply phomotopy_group_pequiv_loop_ptrunc_con}
end
/- some homomorphisms -/
definition is_homomorphism_cast_loop_space_succ_eq_in {A : Type*} (n : ) :
is_homomorphism
(cast (ap (trunc 0 ∘ pointed.carrier) (loop_space_succ_eq_in A (succ n)))
: πg[n+1+1] A → πg[n+1] Ω A) :=
begin
intro g h, induction g with g, induction h with h,
xrewrite [tr_mul_tr, - + fn_cast_eq_cast_fn _ (λn, tr), tr_mul_tr, ↑cast, -tr_compose,
loop_space_succ_eq_in_concat, - + tr_compose],
end
definition is_homomorphism_inverse (A : Type*) (n : )
: is_homomorphism (λp, p⁻¹ : πag[n+2] A → πag[n+2] A) :=
begin
intro g h, rewrite mul.comm,
induction g with g, induction h with h,
exact ap tr !con_inv
end
notation `π→g[`:95 n:0 ` +1] `:0 f:95 := homotopy_group_homomorphism n f
end eq