lean2/hott/algebra/category/precategory.hlean
Floris van Doorn 43cf2ad23d style(hott): replace all other occurrences of hprop/hset
They are replaced by either Prop/Set or prop/set
2016-02-22 11:15:38 -08:00

285 lines
12 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import types.trunc types.pi arity
open eq is_trunc pi equiv equiv.ops
namespace category
/-
Just as in Coq-HoTT we add two redundant fields to precategories: assoc' and id_id.
The first is to make (Cᵒᵖ)ᵒᵖ = C definitionally when C is a constructor.
The second is to ensure that the functor from the terminal category 1 ⇒ Cᵒᵖ is
opposite to the functor 1 ⇒ C.
-/
structure precategory [class] (ob : Type) : Type :=
mk' ::
(hom : ob → ob → Type)
(comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
(ID : Π (a : ob), hom a a)
(assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
comp h (comp g f) = comp (comp h g) f)
(assoc' : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
comp (comp h g) f = comp h (comp g f))
(id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f)
(id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f)
(id_id : Π (a : ob), comp !ID !ID = ID a)
(is_set_hom : Π(a b : ob), is_set (hom a b))
-- attribute precategory [multiple-instances] --this is not used anywhere
attribute precategory.is_set_hom [instance]
infixr ∘ := precategory.comp
-- input ⟶ using \--> (this is a different arrow than \-> (→))
infixl [parsing_only] ` ⟶ `:60 := precategory.hom
namespace hom
infixl ` ⟶ `:60 := precategory.hom -- if you open this namespace, hom a b is printed as a ⟶ b
end hom
abbreviation hom [unfold 2] := @precategory.hom
abbreviation comp [unfold 2] := @precategory.comp
abbreviation ID [unfold 2] := @precategory.ID
abbreviation assoc [unfold 2] := @precategory.assoc
abbreviation assoc' [unfold 2] := @precategory.assoc'
abbreviation id_left [unfold 2] := @precategory.id_left
abbreviation id_right [unfold 2] := @precategory.id_right
abbreviation id_id [unfold 2] := @precategory.id_id
abbreviation is_set_hom [unfold 2] := @precategory.is_set_hom
definition is_prop_hom_eq {ob : Type} [C : precategory ob] {x y : ob} (f g : x ⟶ y)
: is_prop (f = g) :=
_
-- the constructor you want to use in practice
protected definition precategory.mk [constructor] {ob : Type} (hom : ob → ob → Type)
[set : Π (a b : ob), is_set (hom a b)]
(comp : Π ⦃a b c : ob⦄, hom b c → hom a b → hom a c) (ID : Π (a : ob), hom a a)
(ass : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
comp h (comp g f) = comp (comp h g) f)
(idl : Π ⦃a b : ob⦄ (f : hom a b), comp (ID b) f = f)
(idr : Π ⦃a b : ob⦄ (f : hom a b), comp f (ID a) = f) : precategory ob :=
precategory.mk' hom comp ID ass (λa b c d h g f, !ass⁻¹) idl idr (λa, !idl) set
section basic_lemmas
variables {ob : Type} [C : precategory ob]
variables {a b c d : ob} {h : c ⟶ d} {g : hom b c} {f f' : hom a b} {i : a ⟶ a}
include C
definition id [reducible] [unfold 2] := ID a
definition id_leftright (f : hom a b) : id ∘ f ∘ id = f := !id_left ⬝ !id_right
definition comp_id_eq_id_comp (f : hom a b) : f ∘ id = id ∘ f := !id_right ⬝ !id_left⁻¹
definition id_comp_eq_comp_id (f : hom a b) : id ∘ f = f ∘ id := !id_left ⬝ !id_right⁻¹
definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
calc i = i ∘ id : by rewrite id_right
... = id : by rewrite H
definition right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id :=
calc i = id ∘ i : by rewrite id_left
... = id : by rewrite H
definition homset [reducible] [constructor] (x y : ob) : Set :=
Set.mk (hom x y) _
end basic_lemmas
section squares
parameters {ob : Type} [C : precategory ob]
local infixl ` ⟶ `:25 := @precategory.hom ob C
local infixr ∘ := @precategory.comp ob C _ _ _
definition compose_squares {xa xb xc ya yb yc : ob}
{xg : xb ⟶ xc} {xf : xa ⟶ xb} {yg : yb ⟶ yc} {yf : ya ⟶ yb}
{wa : xa ⟶ ya} {wb : xb ⟶ yb} {wc : xc ⟶ yc}
(xyab : wb ∘ xf = yf ∘ wa) (xybc : wc ∘ xg = yg ∘ wb)
: wc ∘ (xg ∘ xf) = (yg ∘ yf) ∘ wa :=
calc
wc ∘ (xg ∘ xf) = (wc ∘ xg) ∘ xf : by rewrite assoc
... = (yg ∘ wb) ∘ xf : by rewrite xybc
... = yg ∘ (wb ∘ xf) : by rewrite assoc
... = yg ∘ (yf ∘ wa) : by rewrite xyab
... = (yg ∘ yf) ∘ wa : by rewrite assoc
definition compose_squares_2x2 {xa xb xc ya yb yc za zb zc : ob}
{xg : xb ⟶ xc} {xf : xa ⟶ xb} {yg : yb ⟶ yc} {yf : ya ⟶ yb} {zg : zb ⟶ zc} {zf : za ⟶ zb}
{va : ya ⟶ za} {vb : yb ⟶ zb} {vc : yc ⟶ zc} {wa : xa ⟶ ya} {wb : xb ⟶ yb} {wc : xc ⟶ yc}
(xyab : wb ∘ xf = yf ∘ wa) (xybc : wc ∘ xg = yg ∘ wb)
(yzab : vb ∘ yf = zf ∘ va) (yzbc : vc ∘ yg = zg ∘ vb)
: (vc ∘ wc) ∘ (xg ∘ xf) = (zg ∘ zf) ∘ (va ∘ wa) :=
calc
(vc ∘ wc) ∘ (xg ∘ xf) = vc ∘ (wc ∘ (xg ∘ xf)) : by rewrite (assoc vc wc _)
... = vc ∘ ((yg ∘ yf) ∘ wa) : by rewrite (compose_squares xyab xybc)
... = (vc ∘ (yg ∘ yf)) ∘ wa : by rewrite assoc
... = ((zg ∘ zf) ∘ va) ∘ wa : by rewrite (compose_squares yzab yzbc)
... = (zg ∘ zf) ∘ (va ∘ wa) : by rewrite assoc
definition square_precompose {xa xb xc yb yc : ob}
{xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc}
(H : wc ∘ xg = yg ∘ wb) (xf : xa ⟶ xb) : wc ∘ xg ∘ xf = yg ∘ wb ∘ xf :=
calc
wc ∘ xg ∘ xf = (wc ∘ xg) ∘ xf : by rewrite assoc
... = (yg ∘ wb) ∘ xf : by rewrite H
... = yg ∘ wb ∘ xf : by rewrite assoc
definition square_postcompose {xb xc yb yc yd : ob}
{xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc}
(H : wc ∘ xg = yg ∘ wb) (yh : yc ⟶ yd) : (yh ∘ wc) ∘ xg = (yh ∘ yg) ∘ wb :=
calc
(yh ∘ wc) ∘ xg = yh ∘ wc ∘ xg : by rewrite assoc
... = yh ∘ yg ∘ wb : by rewrite H
... = (yh ∘ yg) ∘ wb : by rewrite assoc
definition square_prepostcompose {xa xb xc yb yc yd : ob}
{xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc}
(H : wc ∘ xg = yg ∘ wb) (yh : yc ⟶ yd) (xf : xa ⟶ xb)
: (yh ∘ wc) ∘ (xg ∘ xf) = (yh ∘ yg) ∘ (wb ∘ xf) :=
square_precompose (square_postcompose H yh) xf
end squares
structure Precategory : Type :=
(carrier : Type)
(struct : precategory carrier)
definition precategory.Mk [reducible] [constructor] {ob} (C) : Precategory := Precategory.mk ob C
definition precategory.MK [reducible] [constructor] (a b c d e f g h) : Precategory :=
Precategory.mk a (@precategory.mk a b c d e f g h)
abbreviation carrier [unfold 1] := @Precategory.carrier
attribute Precategory.carrier [coercion]
attribute Precategory.struct [instance] [priority 10000] [coercion]
-- definition precategory.carrier [coercion] [reducible] := Precategory.carrier
-- definition precategory.struct [instance] [coercion] [reducible] := Precategory.struct
notation g ` ∘[`:60 C:0 `] `:0 f:60 :=
@comp (Precategory.carrier C) (Precategory.struct C) _ _ _ g f
-- TODO: make this left associative
definition Precategory.eta (C : Precategory) : Precategory.mk C C = C :=
Precategory.rec (λob c, idp) C
/-Characterization of paths between precategories-/
-- introduction tule for paths between precategories
definition precategory_eq {ob : Type}
{C D : precategory ob}
(p : Π{a b}, @hom ob C a b = @hom ob D a b)
(q : Πa b c g f, cast p (@comp ob C a b c g f) = @comp ob D a b c (cast p g) (cast p f))
: C = D :=
begin
induction C with hom1 comp1 ID1 a b il ir, induction D with hom2 comp2 ID2 a' b' il' ir',
esimp at *,
revert q, eapply homotopy2.rec_on @p, esimp, clear p, intro p q, induction p,
esimp at *,
assert H : comp1 = comp2,
{ apply eq_of_homotopy3, intros, apply eq_of_homotopy2, intros, apply q},
induction H,
assert K : ID1 = ID2,
{ apply eq_of_homotopy, intro a, exact !ir'⁻¹ ⬝ !il},
induction K,
apply ap0111111 (precategory.mk' hom1 comp1 ID1): apply is_prop.elim
end
definition precategory_eq_of_equiv {ob : Type}
{C D : precategory ob}
(p : Π⦃a b⦄, @hom ob C a b ≃ @hom ob D a b)
(q : Π{a b c} g f, p (@comp ob C a b c g f) = @comp ob D a b c (p g) (p f))
: C = D :=
begin
fapply precategory_eq,
{ intro a b, exact ua !@p},
{ intros, refine !cast_ua ⬝ !q ⬝ _, apply ap011 !@comp !cast_ua⁻¹ !cast_ua⁻¹},
end
/- if we need to prove properties about precategory_eq, it might be easier with the following proof:
begin
induction C with hom1 comp1 ID1, induction D with hom2 comp2 ID2, esimp at *,
assert H : Σ(s : hom1 = hom2), (λa b, equiv_of_eq (apd100 s a b)) = p,
{ fconstructor,
{ apply eq_of_homotopy2, intros, apply ua, apply p},
{ apply eq_of_homotopy2, intros, rewrite [to_right_inv !eq_equiv_homotopy2, equiv_of_eq_ua]}},
induction H with H1 H2, induction H1, esimp at H2,
assert K : (λa b, equiv.refl) = p,
{ refine _ ⬝ H2, apply eq_of_homotopy2, intros, exact !equiv_of_eq_refl⁻¹},
induction K, clear H2,
esimp at *,
assert H : comp1 = comp2,
{ apply eq_of_homotopy3, intros, apply eq_of_homotopy2, intros, apply q},
assert K : ID1 = ID2,
{ apply eq_of_homotopy, intros, apply r},
induction H, induction K,
apply ap0111111 (precategory.mk' hom1 comp1 ID1): apply is_prop.elim
end
-/
definition Precategory_eq {C D : Precategory}
(p : carrier C = carrier D)
(q : Π{a b : C}, a ⟶ b = cast p a ⟶ cast p b)
(r : Π{a b c : C} (g : b ⟶ c) (f : a ⟶ b), cast q (g ∘ f) = cast q g ∘ cast q f)
: C = D :=
begin
induction C with X C, induction D with Y D, esimp at *, induction p,
esimp at *,
apply ap (Precategory.mk X),
apply precategory_eq @q @r
end
definition Precategory_eq_of_equiv {C D : Precategory}
(p : carrier C ≃ carrier D)
(q : Π⦃a b : C⦄, a ⟶ b ≃ p a ⟶ p b)
(r : Π{a b c : C} (g : b ⟶ c) (f : a ⟶ b), q (g ∘ f) = q g ∘ q f)
: C = D :=
begin
induction C with X C, induction D with Y D, esimp at *,
revert q r, eapply equiv.rec_on_ua p, clear p, intro p, induction p, esimp,
intros,
apply ap (Precategory.mk X),
apply precategory_eq_of_equiv @q @r
end
-- elimination rules for paths between precategories.
-- The first elimination rule is "ap carrier"
definition Precategory_eq_hom [unfold 3] {C D : Precategory} (p : C = D) (a b : C)
: hom a b = hom (cast (ap carrier p) a) (cast (ap carrier p) b) :=
by induction p; reflexivity
--(ap10 (ap10 (apd (λx, @hom (carrier x) (Precategory.struct x)) p⁻¹ᵖ) a) b)⁻¹ᵖ ⬝ _
-- beta/eta rules
definition ap_Precategory_eq' {C D : Precategory}
(p : carrier C = carrier D)
(q : Π{a b : C}, a ⟶ b = cast p a ⟶ cast p b)
(r : Π{a b c : C} (g : b ⟶ c) (f : a ⟶ b), cast q (g ∘ f) = cast q g ∘ cast q f)
(s : Πa, cast q (ID a) = ID (cast p a)) : ap carrier (Precategory_eq p @q @r) = p :=
begin
induction C with X C, induction D with Y D, esimp at *, induction p,
rewrite [↑Precategory_eq, -ap_compose,↑function.compose,ap_constant]
end
/-
theorem Precategory_eq'_eta {C D : Precategory} (p : C = D) :
Precategory_eq
(ap carrier p)
(Precategory_eq_hom p)
(by induction p; intros; reflexivity) = p :=
begin
induction p, induction C with X C, unfold Precategory_eq,
induction C, unfold precategory_eq, exact sorry
end
-/
/-
theorem Precategory_eq2 {C D : Precategory} (p q : C = D)
(r : ap carrier p = ap carrier q)
(s : Precategory_eq_hom p =[r] Precategory_eq_hom q)
: p = q :=
begin
end
-/
end category