lean2/tests/lean/interactive/t12.lean.expected.out
Leonardo de Moura 0390f3c39b feat(library/tactic/boolean_tactics): avoid unnecessary Let expression in proof terms
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-12-06 15:01:54 -08:00

53 lines
No EOL
1.6 KiB
Text

Type Ctrl-D or 'Exit.' to exit or 'Help.' for help.
# Set: pp::colors
Set: pp::unicode
Proved: T1
Theorem T1 (A B : Bool) (assumption : A ∧ B) : B ∧ A :=
let lemma1 : A := Conjunct1 assumption, lemma2 : B := Conjunct2 assumption in Conj lemma2 lemma1
# Proof state:
A : Bool, B : Bool, assumption : A ∧ B ⊢ A
## Proof state:
no goals
## Proof state:
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A ⊢ B
## Proof state:
no goals
## Proof state:
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ B ∧ A
## Proof state:
no goals
## Proved: T2
# Proof state:
A : Bool, B : Bool, assumption : A ∧ B ⊢ A
## Proof state:
A : Bool, B : Bool, assumption::1 : A, assumption::2 : B ⊢ A
## Proof state:
no goals
## Proof state:
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A ⊢ B
## Proof state:
A : Bool, B : Bool, assumption::1 : A, assumption::2 : B, lemma1 : A ⊢ B
## Proof state:
no goals
## Proof state:
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ B ∧ A
## Proof state:
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ B
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A, lemma2 : B ⊢ A
## Proof state:
no goals
## Proved: T3
# Proof state:
A : Bool, B : Bool, assumption : A ∧ B ⊢ A
## Proof state:
A : Bool, B : Bool, assumption::1 : A, assumption::2 : B ⊢ A
## Proof state:
no goals
## Proof state:
A : Bool, B : Bool, assumption : A ∧ B, lemma1 : A ⊢ B
## Proof state:
A : Bool, B : Bool, assumption::1 : A, assumption::2 : B, lemma1 : A ⊢ B
## Proof state:
no goals
## Proved: T4
#