147 lines
4.5 KiB
Text
147 lines
4.5 KiB
Text
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||
--- Author: Jeremy Avigad
|
||
|
||
import logic.connectives.basic logic.connectives.eq struc.relation
|
||
|
||
namespace relation
|
||
|
||
using relation
|
||
|
||
-- Congruences for logic
|
||
-- ---------------------
|
||
|
||
theorem congr_not : congr iff iff not :=
|
||
congr_mk
|
||
(take a b,
|
||
assume H : a ↔ b, iff_intro
|
||
(assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2))
|
||
(assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2)))
|
||
|
||
theorem congr_and : congr2 iff iff iff and :=
|
||
congr2_mk
|
||
(take a1 b1 a2 b2,
|
||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||
iff_intro
|
||
(assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2))
|
||
(assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2)))
|
||
|
||
theorem congr_or : congr2 iff iff iff or :=
|
||
congr2_mk
|
||
(take a1 b1 a2 b2,
|
||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||
iff_intro
|
||
(assume H3 : a1 ∨ a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2))
|
||
(assume H3 : b1 ∨ b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2)))
|
||
|
||
theorem congr_imp : congr2 iff iff iff imp :=
|
||
congr2_mk
|
||
(take a1 b1 a2 b2,
|
||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||
iff_intro
|
||
(assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1)))
|
||
(assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1))))
|
||
|
||
theorem congr_iff : congr2 iff iff iff iff :=
|
||
congr2_mk
|
||
(take a1 b1 a2 b2,
|
||
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
|
||
iff_intro
|
||
(assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2))
|
||
(assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2))))
|
||
|
||
-- theorem congr_const_iff [instance] := congr.const iff iff_refl
|
||
theorem congr_not_compose [instance] := congr.compose congr_not
|
||
theorem congr_and_compose [instance] := congr.compose21 congr_and
|
||
theorem congr_or_compose [instance] := congr.compose21 congr_or
|
||
theorem congr_implies_compose [instance] := congr.compose21 congr_imp
|
||
theorem congr_iff_compose [instance] := congr.compose21 congr_iff
|
||
|
||
|
||
-- Generalized substitution
|
||
-- ------------------------
|
||
|
||
-- TODO: note that the target has to be "iff". Otherwise, there is not enough
|
||
-- information to infer an mp-like relation.
|
||
|
||
namespace general_operations
|
||
|
||
theorem subst {T : Type} (R : T → T → Prop) ⦃P : T → Prop⦄ {C : congr R iff P}
|
||
{a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (congr.app C H) H1
|
||
|
||
end general_operations
|
||
|
||
-- = is an equivalence relation
|
||
-- ----------------------------
|
||
|
||
theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive (@eq T) :=
|
||
relation.is_reflexive_mk (@refl T)
|
||
|
||
theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric (@eq T) :=
|
||
relation.is_symmetric_mk (@symm T)
|
||
|
||
theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive (@eq T) :=
|
||
relation.is_transitive_mk (@trans T)
|
||
|
||
-- TODO: this is only temporary, needed to inform Lean that is_equivalence is a class
|
||
theorem is_equivalence_eq [instance] (T : Type) : relation.is_equivalence (@eq T) :=
|
||
relation.is_equivalence_mk _ _ _
|
||
|
||
|
||
-- iff is an equivalence relation
|
||
-- ------------------------------
|
||
|
||
theorem is_reflexive_iff [instance] : relation.is_reflexive iff :=
|
||
relation.is_reflexive_mk (@iff_refl)
|
||
|
||
theorem is_symmetric_iff [instance] : relation.is_symmetric iff :=
|
||
relation.is_symmetric_mk (@iff_symm)
|
||
|
||
theorem is_transitive_iff [instance] : relation.is_transitive iff :=
|
||
relation.is_transitive_mk (@iff_trans)
|
||
|
||
|
||
-- Mp-like for iff
|
||
-- ---------------
|
||
|
||
theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : relation.mp_like H :=
|
||
relation.mp_like_mk (iff_elim_left H)
|
||
|
||
-- Substition for iff
|
||
-- ------------------
|
||
|
||
theorem subst_iff {P : Prop → Prop} {C : congr iff iff P} {a b : Prop} (H : a ↔ b) (H1 : P a) :
|
||
P b :=
|
||
@general_operations.subst Prop iff P C a b H H1
|
||
|
||
-- Support for calc
|
||
-- ----------------
|
||
|
||
calc_refl iff_refl
|
||
calc_subst subst_iff
|
||
calc_trans iff_trans
|
||
|
||
namespace iff_ops
|
||
postfix `⁻¹`:100 := iff_symm
|
||
infixr `⬝`:75 := iff_trans
|
||
infixr `▸`:75 := subst_iff
|
||
end iff_ops
|
||
|
||
|
||
|
||
|
||
|
||
-- Boolean calculations
|
||
-- --------------------
|
||
|
||
-- TODO: move these somewhere
|
||
|
||
theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b :=
|
||
calc
|
||
(a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc _ _ _
|
||
... ↔ a ∨ (c ∨ b) : {or_comm b c}
|
||
... ↔ (a ∨ c) ∨ b : iff_symm (or_assoc _ _ _)
|
||
|
||
-- TODO: add or_left_comm, and_right_comm, and_left_comm
|
||
|
||
end relation
|