42 lines
1.3 KiB
Text
42 lines
1.3 KiB
Text
import data.nat
|
|
open algebra
|
|
|
|
constant f {A : Type} : A → A → A
|
|
|
|
theorem test1 {A : Type} [s : comm_ring A] (a b c : A) : f (a + 0) (f (a + 0) (a + 0)) = f a (f (0 + a) a) :=
|
|
begin
|
|
rewrite
|
|
add_zero at {1 3} -- rewrite 1st and 3rd occurrences
|
|
[0 + _]add.comm -- apply commutativity to (0 + _)
|
|
end
|
|
|
|
check @mul_zero
|
|
|
|
axiom Ax {A : Type} [s₁ : has_mul A] [s₂ : has_zero A] (a : A) : f (a * 0) (a * 0) = 0
|
|
|
|
theorem test2 {A : Type} [s : comm_ring A] (a b c : A) : f 0 0 = 0 :=
|
|
begin
|
|
rewrite
|
|
-(mul_zero a) at {1 2} -- - means apply symmetry, rewrite 0 ==> a * 0 at 1st and 2nd occurrences
|
|
Ax -- use Ax as rewrite rule
|
|
end
|
|
|
|
theorem test3 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 :=
|
|
begin
|
|
rewrite +mul_zero +zero_mul +add_zero -- in rewrite rules, + is notation for one or more
|
|
end
|
|
|
|
print definition test3
|
|
|
|
theorem test4 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 :=
|
|
begin
|
|
rewrite *mul_zero *zero_mul *add_zero *zero_add -- in rewrite rules, * is notation for zero or more
|
|
end
|
|
|
|
theorem test5 {A : Type} [s : comm_ring A] (a b c : A) : a * 0 + 0 * b + c * 0 + 0 * a = 0 :=
|
|
begin
|
|
rewrite
|
|
2 mul_zero -- apply mul_zero exactly twice
|
|
2 zero_mul -- apply zero_mul exactly twice
|
|
5>add_zero -- apply add_zero at most 5 times
|
|
end
|