625 lines
23 KiB
Text
625 lines
23 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
Basic group theory
|
|
-/
|
|
|
|
import algebra.category.category algebra.bundled .homomorphism types.pointed2
|
|
|
|
open eq algebra pointed function is_trunc pi equiv is_equiv
|
|
set_option class.force_new true
|
|
|
|
namespace group
|
|
definition pointed_Group [instance] [constructor] (G : Group) : pointed G :=
|
|
pointed.mk 1
|
|
|
|
definition Group.struct' [instance] [reducible] (G : Group) : group G :=
|
|
Group.struct G
|
|
|
|
definition ab_group_pSet_of_Group [instance] (G : AbGroup) : ab_group (pSet_of_Group G) :=
|
|
AbGroup.struct G
|
|
|
|
definition group_pSet_of_Group [instance] [priority 900] (G : Group) :
|
|
group (pSet_of_Group G) :=
|
|
Group.struct G
|
|
|
|
/- left and right actions -/
|
|
definition is_equiv_mul_right [constructor] {A : Group} (a : A) : is_equiv (λb, b * a) :=
|
|
adjointify _ (λb : A, b * a⁻¹) (λb, !inv_mul_cancel_right) (λb, !mul_inv_cancel_right)
|
|
|
|
definition right_action [constructor] {A : Group} (a : A) : A ≃ A :=
|
|
equiv.mk _ (is_equiv_mul_right a)
|
|
|
|
definition is_equiv_add_right [constructor] {A : AddGroup} (a : A) : is_equiv (λb, b + a) :=
|
|
adjointify _ (λb : A, b - a) (λb, !neg_add_cancel_right) (λb, !add_neg_cancel_right)
|
|
|
|
definition add_right_action [constructor] {A : AddGroup} (a : A) : A ≃ A :=
|
|
equiv.mk _ (is_equiv_add_right a)
|
|
|
|
/- homomorphisms -/
|
|
|
|
structure homomorphism (G₁ G₂ : Group) : Type :=
|
|
(φ : G₁ → G₂)
|
|
(p : is_mul_hom φ)
|
|
|
|
infix ` →g `:55 := homomorphism
|
|
|
|
abbreviation group_fun [unfold 3] [coercion] [reducible] := @homomorphism.φ
|
|
definition homomorphism.struct [unfold 3] [instance] [priority 900] {G₁ G₂ : Group}
|
|
(φ : G₁ →g G₂) : is_mul_hom φ :=
|
|
homomorphism.p φ
|
|
|
|
definition homomorphism.mulstruct [instance] [priority 2000] {G₁ G₂ : Group} (φ : G₁ →g G₂)
|
|
: is_mul_hom φ :=
|
|
homomorphism.p φ
|
|
|
|
definition homomorphism.addstruct [instance] [priority 2000] {G₁ G₂ : AddGroup} (φ : G₁ →g G₂)
|
|
: is_add_hom φ :=
|
|
homomorphism.p φ
|
|
|
|
variables {G G₁ G₂ G₃ : Group} {g h : G₁} {ψ : G₂ →g G₃} {φ₁ φ₂ : G₁ →g G₂} (φ : G₁ →g G₂)
|
|
|
|
definition to_respect_mul /- φ -/ (g h : G₁) : φ (g * h) = φ g * φ h :=
|
|
respect_mul φ g h
|
|
|
|
theorem to_respect_one /- φ -/ : φ 1 = 1 :=
|
|
respect_one φ
|
|
|
|
theorem to_respect_inv /- φ -/ (g : G₁) : φ g⁻¹ = (φ g)⁻¹ :=
|
|
respect_inv φ g
|
|
|
|
definition to_is_embedding_homomorphism /- φ -/ (H : Π{g}, φ g = 1 → g = 1) : is_embedding φ :=
|
|
is_embedding_of_is_mul_hom φ @H
|
|
|
|
variables (G₁ G₂)
|
|
definition is_set_homomorphism [instance] : is_set (G₁ →g G₂) :=
|
|
begin
|
|
have H : G₁ →g G₂ ≃ Σ(f : G₁ → G₂), Π(g₁ g₂ : G₁), f (g₁ * g₂) = f g₁ * f g₂,
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro φ, induction φ, constructor, exact (respect_mul φ)},
|
|
{ intro v, induction v with f H, constructor, exact H},
|
|
{ intro v, induction v, reflexivity},
|
|
{ intro φ, induction φ, reflexivity}
|
|
end,
|
|
exact is_trunc_equiv_closed_rev 0 H _
|
|
end
|
|
|
|
variables {G₁ G₂}
|
|
definition pmap_of_homomorphism [constructor] /- φ -/ : G₁ →* G₂ :=
|
|
pmap.mk φ begin esimp, exact respect_one φ end
|
|
|
|
definition homomorphism_change_fun [constructor] {G₁ G₂ : Group}
|
|
(φ : G₁ →g G₂) (f : G₁ → G₂) (p : φ ~ f) : G₁ →g G₂ :=
|
|
homomorphism.mk f
|
|
(λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h))
|
|
|
|
definition homomorphism_eq (p : φ₁ ~ φ₂) : φ₁ = φ₂ :=
|
|
begin
|
|
induction φ₁ with φ₁ q₁, induction φ₂ with φ₂ q₂, esimp at p, induction p,
|
|
exact ap (homomorphism.mk φ₁) !is_prop.elim
|
|
end
|
|
|
|
section additive
|
|
variables {H₁ H₂ : AddGroup} (χ : H₁ →g H₂)
|
|
definition to_respect_add /- χ -/ (g h : H₁) : χ (g + h) = χ g + χ h :=
|
|
respect_add χ g h
|
|
|
|
theorem to_respect_zero /- χ -/ : χ 0 = 0 :=
|
|
respect_zero χ
|
|
|
|
theorem to_respect_neg /- χ -/ (g : H₁) : χ (-g) = -(χ g) :=
|
|
respect_neg χ g
|
|
|
|
end additive
|
|
|
|
section add_mul
|
|
variables {H₁ : AddGroup} {H₂ : Group} (χ : H₁ →g H₂)
|
|
definition to_respect_add_mul /- χ -/ (g h : H₁) : χ (g + h) = χ g * χ h :=
|
|
to_respect_mul χ g h
|
|
|
|
theorem to_respect_zero_one /- χ -/ : χ 0 = 1 :=
|
|
to_respect_one χ
|
|
|
|
theorem to_respect_neg_inv /- χ -/ (g : H₁) : χ (-g) = (χ g)⁻¹ :=
|
|
to_respect_inv χ g
|
|
|
|
end add_mul
|
|
|
|
section mul_add
|
|
variables {H₁ : Group} {H₂ : AddGroup} (χ : H₁ →g H₂)
|
|
definition to_respect_mul_add /- χ -/ (g h : H₁) : χ (g * h) = χ g + χ h :=
|
|
to_respect_mul χ g h
|
|
|
|
theorem to_respect_one_zero /- χ -/ : χ 1 = 0 :=
|
|
to_respect_one χ
|
|
|
|
theorem to_respect_inv_neg /- χ -/ (g : H₁) : χ g⁻¹ = -(χ g) :=
|
|
to_respect_inv χ g
|
|
|
|
end mul_add
|
|
|
|
/- categorical structure of groups + homomorphisms -/
|
|
|
|
definition homomorphism_compose [constructor] [trans] [reducible] (ψ : G₂ →g G₃) (φ : G₁ →g G₂) : G₁ →g G₃ :=
|
|
homomorphism.mk (ψ ∘ φ) (is_mul_hom_compose _ _)
|
|
|
|
variable (G)
|
|
definition homomorphism_id [constructor] [refl] : G →g G :=
|
|
homomorphism.mk (@id G) (is_mul_hom_id G)
|
|
variable {G}
|
|
|
|
abbreviation gid [constructor] := @homomorphism_id
|
|
infixr ` ∘g `:75 := homomorphism_compose
|
|
notation 1 := homomorphism_id _
|
|
|
|
structure isomorphism (A B : Group) :=
|
|
(to_hom : A →g B)
|
|
(is_equiv_to_hom : is_equiv to_hom)
|
|
|
|
infix ` ≃g `:25 := isomorphism
|
|
attribute isomorphism.to_hom [coercion]
|
|
attribute isomorphism.is_equiv_to_hom [instance]
|
|
attribute isomorphism._trans_of_to_hom [unfold 3]
|
|
|
|
definition equiv_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ ≃ G₂ :=
|
|
equiv.mk φ _
|
|
|
|
definition pequiv_of_isomorphism [constructor] (φ : G₁ ≃g G₂) :
|
|
G₁ ≃* G₂ :=
|
|
pequiv.mk φ begin esimp, exact _ end begin esimp, exact respect_one φ end
|
|
|
|
definition isomorphism_of_equiv [constructor] (φ : G₁ ≃ G₂)
|
|
(p : Πg₁ g₂, φ (g₁ * g₂) = φ g₁ * φ g₂) : G₁ ≃g G₂ :=
|
|
isomorphism.mk (homomorphism.mk φ p) !to_is_equiv
|
|
|
|
definition isomorphism_of_eq [constructor] {G₁ G₂ : Group} (φ : G₁ = G₂) : G₁ ≃g G₂ :=
|
|
isomorphism_of_equiv (equiv_of_eq (ap Group.carrier φ))
|
|
begin intros, induction φ, reflexivity end
|
|
|
|
definition to_ginv [constructor] (φ : G₁ ≃g G₂) : G₂ →g G₁ :=
|
|
homomorphism.mk φ⁻¹
|
|
abstract begin
|
|
intro g₁ g₂, apply inj' φ,
|
|
rewrite [respect_mul φ, +right_inv φ]
|
|
end end
|
|
|
|
variable (G)
|
|
definition isomorphism.refl [refl] [constructor] : G ≃g G :=
|
|
isomorphism.mk 1 !is_equiv_id
|
|
variable {G}
|
|
|
|
definition isomorphism.symm [symm] [constructor] (φ : G₁ ≃g G₂) : G₂ ≃g G₁ :=
|
|
isomorphism.mk (to_ginv φ) !is_equiv_inv
|
|
|
|
definition isomorphism.trans [trans] [constructor] (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₃) : G₁ ≃g G₃ :=
|
|
isomorphism.mk (ψ ∘g φ) !is_equiv_compose
|
|
|
|
definition isomorphism.eq_trans [trans] [constructor]
|
|
{G₁ G₂ : Group} {G₃ : Group} (φ : G₁ = G₂) (ψ : G₂ ≃g G₃) : G₁ ≃g G₃ :=
|
|
proof isomorphism.trans (isomorphism_of_eq φ) ψ qed
|
|
|
|
definition isomorphism.trans_eq [trans] [constructor]
|
|
{G₁ : Group} {G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ = G₃) : G₁ ≃g G₃ :=
|
|
isomorphism.trans φ (isomorphism_of_eq ψ)
|
|
|
|
postfix `⁻¹ᵍ`:(max + 1) := isomorphism.symm
|
|
infixl ` ⬝g `:75 := isomorphism.trans
|
|
infixl ` ⬝gp `:75 := isomorphism.trans_eq
|
|
infixl ` ⬝pg `:75 := isomorphism.eq_trans
|
|
|
|
definition pmap_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ →* G₂ :=
|
|
pequiv_of_isomorphism φ
|
|
|
|
definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) :
|
|
φ ⬝g ψ ~ ψ ∘ φ :=
|
|
by reflexivity
|
|
|
|
definition add_homomorphism (G H : AddGroup) : Type := homomorphism G H
|
|
infix ` →a `:55 := add_homomorphism
|
|
|
|
abbreviation agroup_fun [coercion] [unfold 3] [reducible] {G H : AddGroup} (φ : G →a H) : G → H :=
|
|
φ
|
|
|
|
definition add_homomorphism.struct [instance] {G H : AddGroup} (φ : G →a H) : is_add_hom φ :=
|
|
homomorphism.addstruct φ
|
|
|
|
definition add_homomorphism.mk [constructor] {G H : AddGroup} (φ : G → H) (h : is_add_hom φ) : G →g H :=
|
|
homomorphism.mk φ h
|
|
|
|
definition add_homomorphism_compose [constructor] [trans] [reducible] {G₁ G₂ G₃ : AddGroup}
|
|
(ψ : G₂ →a G₃) (φ : G₁ →a G₂) : G₁ →a G₃ :=
|
|
add_homomorphism.mk (ψ ∘ φ) (is_add_hom_compose _ _)
|
|
|
|
definition add_homomorphism_id [constructor] [refl] (G : AddGroup) : G →a G :=
|
|
add_homomorphism.mk (@id G) (is_add_hom_id G)
|
|
|
|
abbreviation aid [constructor] := @add_homomorphism_id
|
|
infixr ` ∘a `:75 := add_homomorphism_compose
|
|
|
|
definition to_respect_add' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g h : H₁) : χ (g + h) = χ g + χ h :=
|
|
respect_add χ g h
|
|
|
|
theorem to_respect_zero' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) : χ 0 = 0 :=
|
|
respect_zero χ
|
|
|
|
theorem to_respect_neg' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g : H₁) : χ (-g) = -(χ g) :=
|
|
respect_neg χ g
|
|
|
|
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
|
|
begin
|
|
fapply phomotopy_of_homotopy, reflexivity
|
|
end
|
|
|
|
definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H)
|
|
: pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ :=
|
|
begin
|
|
fapply phomotopy_of_homotopy, reflexivity
|
|
end
|
|
|
|
definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ)
|
|
: pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ :=
|
|
begin
|
|
fapply phomotopy_of_homotopy, exact H
|
|
end
|
|
|
|
definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) :
|
|
pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ :=
|
|
begin
|
|
apply phomotopy_of_homotopy, reflexivity
|
|
end
|
|
|
|
definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ :=
|
|
begin
|
|
induction φ with φ φe, induction ψ with ψ ψe,
|
|
exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo
|
|
end
|
|
|
|
definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) :=
|
|
begin
|
|
have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f,
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro φ, induction φ, constructor, assumption },
|
|
{ intro v, induction v, constructor, assumption },
|
|
{ intro v, induction v, reflexivity },
|
|
{ intro φ, induction φ, reflexivity }
|
|
end,
|
|
exact is_trunc_equiv_closed_rev _ H _
|
|
end
|
|
|
|
definition trivial_homomorphism (A B : Group) : A →g B :=
|
|
homomorphism.mk (λa, 1) (λa a', (mul_one 1)⁻¹)
|
|
|
|
definition trivial_add_homomorphism (A B : AddGroup) : A →a B :=
|
|
homomorphism.mk (λa, 0) (λa a', (add_zero 0)⁻¹)
|
|
|
|
/- the group structure on homomorphisms between two abelian groups -/
|
|
|
|
definition homomorphism_add [constructor] {G H : AddAbGroup} (φ ψ : G →a H) : G →a H :=
|
|
add_homomorphism.mk (λg, φ g + ψ g)
|
|
abstract begin
|
|
intro g g', refine ap011 add !to_respect_add' !to_respect_add' ⬝ _,
|
|
refine !add.assoc ⬝ ap (add _) (!add.assoc⁻¹ ⬝ ap (λx, x + _) !add.comm ⬝ !add.assoc) ⬝
|
|
!add.assoc⁻¹
|
|
end end
|
|
|
|
definition homomorphism_mul [constructor] {G H : AbGroup} (φ ψ : G →g H) : G →g H :=
|
|
homomorphism.mk (λg, φ g * ψ g) (to_respect_add (homomorphism_add φ ψ))
|
|
|
|
definition homomorphism_inv [constructor] {G H : AbGroup} (φ : G →g H) : G →g H :=
|
|
begin
|
|
apply homomorphism.mk (λg, (φ g)⁻¹),
|
|
intro g h,
|
|
refine ap (λx, x⁻¹) (to_respect_mul φ g h) ⬝ !mul_inv ⬝ !mul.comm,
|
|
end
|
|
|
|
definition ab_group_homomorphism [constructor] (G H : AbGroup) : ab_group (G →g H) :=
|
|
begin
|
|
refine ab_group.mk _ homomorphism_mul _ (trivial_homomorphism G H) _ _ homomorphism_inv _ _,
|
|
{ intros φ₁ φ₂ φ₃, apply homomorphism_eq, intro g, apply mul.assoc },
|
|
{ intro φ, apply homomorphism_eq, intro g, apply one_mul },
|
|
{ intro φ, apply homomorphism_eq, intro g, apply mul_one },
|
|
{ intro φ, apply homomorphism_eq, intro g, apply mul.left_inv },
|
|
{ intro φ ψ, apply homomorphism_eq, intro g, apply mul.comm }
|
|
end
|
|
|
|
definition aghomomorphism [constructor] (G H : AbGroup) : AbGroup :=
|
|
AbGroup.mk (G →g H) (ab_group_homomorphism G H)
|
|
|
|
/- given an equivalence A ≃ B we can transport a group structure on A to a group structure on B -/
|
|
|
|
section
|
|
|
|
parameters {A B : Type} (f : A ≃ B) [group A]
|
|
|
|
definition group_equiv_mul (b b' : B) : B := f (f⁻¹ᶠ b * f⁻¹ᶠ b')
|
|
|
|
definition group_equiv_one : B := f one
|
|
|
|
definition group_equiv_inv (b : B) : B := f (f⁻¹ᶠ b)⁻¹
|
|
|
|
local infix * := group_equiv_mul
|
|
local postfix ^ := group_equiv_inv
|
|
local notation 1 := group_equiv_one
|
|
|
|
theorem group_equiv_mul_assoc (b₁ b₂ b₃ : B) : (b₁ * b₂) * b₃ = b₁ * (b₂ * b₃) :=
|
|
by rewrite [↑group_equiv_mul, +left_inv f, mul.assoc]
|
|
|
|
theorem group_equiv_one_mul (b : B) : 1 * b = b :=
|
|
by rewrite [↑group_equiv_mul, ↑group_equiv_one, left_inv f, one_mul, right_inv f]
|
|
|
|
theorem group_equiv_mul_one (b : B) : b * 1 = b :=
|
|
by rewrite [↑group_equiv_mul, ↑group_equiv_one, left_inv f, mul_one, right_inv f]
|
|
|
|
theorem group_equiv_mul_left_inv (b : B) : b^ * b = 1 :=
|
|
by rewrite [↑group_equiv_mul, ↑group_equiv_one, ↑group_equiv_inv,
|
|
+left_inv f, mul.left_inv]
|
|
|
|
definition group_equiv_closed : group B :=
|
|
⦃group,
|
|
mul := group_equiv_mul,
|
|
mul_assoc := group_equiv_mul_assoc,
|
|
one := group_equiv_one,
|
|
one_mul := group_equiv_one_mul,
|
|
mul_one := group_equiv_mul_one,
|
|
inv := group_equiv_inv,
|
|
mul_left_inv := group_equiv_mul_left_inv,
|
|
is_set_carrier := is_trunc_equiv_closed 0 f _ ⦄
|
|
|
|
end
|
|
|
|
section
|
|
variables {A B : Type} (f : A ≃ B) [ab_group A]
|
|
definition group_equiv_mul_comm (b b' : B) : group_equiv_mul f b b' = group_equiv_mul f b' b :=
|
|
by rewrite [↑group_equiv_mul, mul.comm]
|
|
|
|
definition ab_group_equiv_closed : ab_group B :=
|
|
⦃ab_group, group_equiv_closed f,
|
|
mul_comm := group_equiv_mul_comm f⦄
|
|
end
|
|
|
|
variable (G)
|
|
|
|
/- the trivial group -/
|
|
open unit
|
|
definition group_unit [constructor] : group unit :=
|
|
group.mk _ (λx y, star) (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp)
|
|
|
|
definition ab_group_unit [constructor] : ab_group unit :=
|
|
⦃ab_group, group_unit, mul_comm := λx y, idp⦄
|
|
|
|
definition trivial_group [constructor] : Group :=
|
|
Group.mk _ group_unit
|
|
|
|
abbreviation G0 := trivial_group
|
|
|
|
definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π x y : G, x * y = y * x) : AbGroup.{u} :=
|
|
begin
|
|
induction G,
|
|
fapply AbGroup.mk,
|
|
assumption,
|
|
exact ⦃ab_group, struct', mul_comm := H⦄
|
|
end
|
|
|
|
definition trivial_ab_group : AbGroup.{0} :=
|
|
begin
|
|
fapply AbGroup_of_Group trivial_group, intro x y, reflexivity
|
|
end
|
|
|
|
definition trivial_group_of_is_contr [H : is_contr G] : G ≃g G0 :=
|
|
begin
|
|
fapply isomorphism_of_equiv,
|
|
{ apply equiv_unit_of_is_contr},
|
|
{ intros, reflexivity}
|
|
end
|
|
|
|
definition ab_group_of_is_contr (A : Type) [is_contr A] : ab_group A :=
|
|
have ab_group unit, from ab_group_unit,
|
|
ab_group_equiv_closed (equiv_unit_of_is_contr A)⁻¹ᵉ
|
|
|
|
definition group_of_is_contr (A : Type) [is_contr A] : group A :=
|
|
have ab_group A, from ab_group_of_is_contr A, by apply _
|
|
|
|
definition ab_group_lift_unit : ab_group (lift unit) :=
|
|
ab_group_of_is_contr (lift unit)
|
|
|
|
definition trivial_ab_group_lift : AbGroup :=
|
|
AbGroup.mk _ ab_group_lift_unit
|
|
|
|
definition from_trivial_ab_group (A : AbGroup) : trivial_ab_group →g A :=
|
|
trivial_homomorphism trivial_ab_group A
|
|
|
|
definition is_embedding_from_trivial_ab_group (A : AbGroup) :
|
|
is_embedding (from_trivial_ab_group A) :=
|
|
begin
|
|
fapply is_embedding_of_is_injective,
|
|
intro x y p,
|
|
induction x, induction y, reflexivity
|
|
end
|
|
|
|
definition to_trivial_ab_group (A : AbGroup) : A →g trivial_ab_group :=
|
|
trivial_homomorphism A trivial_ab_group
|
|
|
|
variable {G}
|
|
|
|
/-
|
|
A group where the point in the pointed type corresponds with 1 in the group.
|
|
We need this structure when we are given a pointed type, and want to say that there is a group
|
|
structure on it which is compatible with the point. This is used in chain complexes.
|
|
-/
|
|
structure pgroup [class] (X : Type*) extends semigroup X, has_inv X :=
|
|
(pt_mul : Πa, mul pt a = a)
|
|
(mul_pt : Πa, mul a pt = a)
|
|
(mul_left_inv_pt : Πa, mul (inv a) a = pt)
|
|
|
|
definition group_of_pgroup [reducible] [instance] (X : Type*) [H : pgroup X]
|
|
: group X :=
|
|
⦃group, H,
|
|
one := pt,
|
|
one_mul := pgroup.pt_mul ,
|
|
mul_one := pgroup.mul_pt,
|
|
mul_left_inv := pgroup.mul_left_inv_pt⦄
|
|
|
|
definition pgroup_of_group (X : Type*) [H : group X] (p : one = pt :> X) : pgroup X :=
|
|
begin
|
|
cases X with X x, esimp at *, induction p,
|
|
exact ⦃pgroup, H,
|
|
pt_mul := one_mul,
|
|
mul_pt := mul_one,
|
|
mul_left_inv_pt := mul.left_inv⦄
|
|
end
|
|
|
|
definition Group_of_pgroup (G : Type*) [pgroup G] : Group :=
|
|
Group.mk G _
|
|
|
|
definition pgroup_Group [instance] (G : Group) : pgroup G :=
|
|
⦃ pgroup, Group.struct G,
|
|
pt_mul := one_mul,
|
|
mul_pt := mul_one,
|
|
mul_left_inv_pt := mul.left_inv ⦄
|
|
|
|
-- infinity pgroups
|
|
|
|
structure inf_pgroup [class] (X : Type*) extends inf_semigroup X, has_inv X :=
|
|
(pt_mul : Πa, mul pt a = a)
|
|
(mul_pt : Πa, mul a pt = a)
|
|
(mul_left_inv_pt : Πa, mul (inv a) a = pt)
|
|
|
|
definition inf_group_of_inf_pgroup [reducible] [instance] (X : Type*) [H : inf_pgroup X]
|
|
: inf_group X :=
|
|
⦃inf_group, H,
|
|
one := pt,
|
|
one_mul := inf_pgroup.pt_mul ,
|
|
mul_one := inf_pgroup.mul_pt,
|
|
mul_left_inv := inf_pgroup.mul_left_inv_pt⦄
|
|
|
|
definition inf_pgroup_of_inf_group (X : Type*) [H : inf_group X] (p : one = pt :> X) : inf_pgroup X :=
|
|
begin
|
|
cases X with X x, esimp at *, induction p,
|
|
exact ⦃inf_pgroup, H,
|
|
pt_mul := one_mul,
|
|
mul_pt := mul_one,
|
|
mul_left_inv_pt := mul.left_inv⦄
|
|
end
|
|
|
|
definition inf_Group_of_inf_pgroup (G : Type*) [inf_pgroup G] : InfGroup :=
|
|
InfGroup.mk G _
|
|
|
|
definition inf_pgroup_InfGroup [instance] (G : InfGroup) : inf_pgroup G :=
|
|
⦃ inf_pgroup, InfGroup.struct G,
|
|
pt_mul := one_mul,
|
|
mul_pt := mul_one,
|
|
mul_left_inv_pt := mul.left_inv ⦄
|
|
|
|
/- equality of groups and abelian groups -/
|
|
|
|
definition group.to_has_mul {A : Type} (H : group A) : has_mul A := _
|
|
definition group.to_has_inv {A : Type} (H : group A) : has_inv A := _
|
|
definition group.to_has_one {A : Type} (H : group A) : has_one A := _
|
|
local attribute group.to_has_mul group.to_has_inv [coercion]
|
|
|
|
universe variable l
|
|
variables {A B : Type.{l}}
|
|
definition group_eq {G H : group A} (same_mul' : Π(g h : A), @mul A G g h = @mul A H g h)
|
|
: G = H :=
|
|
begin
|
|
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
|
|
from λg, !mul_inv_cancel_right⁻¹,
|
|
cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4,
|
|
cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4,
|
|
have same_mul : Gm = Hm, from eq_of_homotopy2 same_mul',
|
|
cases same_mul,
|
|
have same_one : G1 = H1, from calc
|
|
G1 = Hm G1 H1 : Hh3
|
|
... = H1 : Gh2,
|
|
have same_inv : Gi = Hi, from eq_of_homotopy (take g, calc
|
|
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
|
|
... = Hm G1 (Hi g) : by rewrite Gh4
|
|
... = Hi g : Gh2),
|
|
cases same_one, cases same_inv,
|
|
have ps : Gs = Hs, from !is_prop.elim,
|
|
have ph1 : Gh1 = Hh1, from !is_prop.elim,
|
|
have ph2 : Gh2 = Hh2, from !is_prop.elim,
|
|
have ph3 : Gh3 = Hh3, from !is_prop.elim,
|
|
have ph4 : Gh4 = Hh4, from !is_prop.elim,
|
|
cases ps, cases ph1, cases ph2, cases ph3, cases ph4, reflexivity
|
|
end
|
|
|
|
definition group_pathover {G : group A} {H : group B} {p : A = B}
|
|
(resp_mul : Π(g h : A), cast p (g * h) = cast p g * cast p h) : G =[p] H :=
|
|
begin
|
|
induction p,
|
|
apply pathover_idp_of_eq, exact group_eq (resp_mul)
|
|
end
|
|
|
|
definition Group_eq_of_eq {G H : Group} (p : Group.carrier G = Group.carrier H)
|
|
(resp_mul : Π(g h : G), cast p (g * h) = cast p g * cast p h) : G = H :=
|
|
begin
|
|
cases G with Gc G, cases H with Hc H,
|
|
apply (apd011 Group.mk p),
|
|
exact group_pathover resp_mul
|
|
end
|
|
|
|
definition Group_eq {G H : Group} (f : Group.carrier G ≃ Group.carrier H)
|
|
(resp_mul : Π(g h : G), f (g * h) = f g * f h) : G = H :=
|
|
Group_eq_of_eq (ua f) (λg h, !cast_ua ⬝ resp_mul g h ⬝ ap011 mul !cast_ua⁻¹ !cast_ua⁻¹)
|
|
|
|
definition eq_of_isomorphism {G₁ G₂ : Group} (φ : G₁ ≃g G₂) : G₁ = G₂ :=
|
|
Group_eq (equiv_of_isomorphism φ) (respect_mul φ)
|
|
|
|
definition ab_group.to_has_mul {A : Type} (H : ab_group A) : has_mul A := _
|
|
local attribute ab_group.to_has_mul [coercion]
|
|
|
|
definition ab_group_eq {A : Type} {G H : ab_group A}
|
|
(same_mul : Π(g h : A), @mul A G g h = @mul A H g h)
|
|
: G = H :=
|
|
begin
|
|
have g_eq : @ab_group.to_group A G = @ab_group.to_group A H, from group_eq same_mul,
|
|
cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4 Gh5,
|
|
cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4 Hh5,
|
|
have pm : Gm = Hm, from ap (@mul _ ∘ group.to_has_mul) g_eq,
|
|
have pi : Gi = Hi, from ap (@inv _ ∘ group.to_has_inv) g_eq,
|
|
have p1 : G1 = H1, from ap (@one _ ∘ group.to_has_one) g_eq,
|
|
induction pm, induction pi, induction p1,
|
|
have ps : Gs = Hs, from !is_prop.elim,
|
|
have ph1 : Gh1 = Hh1, from !is_prop.elim,
|
|
have ph2 : Gh2 = Hh2, from !is_prop.elim,
|
|
have ph3 : Gh3 = Hh3, from !is_prop.elim,
|
|
have ph4 : Gh4 = Hh4, from !is_prop.elim,
|
|
have ph5 : Gh5 = Hh5, from !is_prop.elim,
|
|
induction ps, induction ph1, induction ph2, induction ph3, induction ph4, induction ph5,
|
|
reflexivity
|
|
end
|
|
|
|
definition ab_group_pathover {A B : Type} {G : ab_group A} {H : ab_group B} {p : A = B}
|
|
(resp_mul : Π(g h : A), cast p (g * h) = cast p g * cast p h) : G =[p] H :=
|
|
begin
|
|
induction p,
|
|
apply pathover_idp_of_eq, exact ab_group_eq (resp_mul)
|
|
end
|
|
|
|
definition AbGroup_eq_of_isomorphism {G₁ G₂ : AbGroup} (φ : G₁ ≃g G₂) : G₁ = G₂ :=
|
|
begin
|
|
induction G₁, induction G₂,
|
|
apply apd011 AbGroup.mk (ua (equiv_of_isomorphism φ)),
|
|
apply ab_group_pathover,
|
|
intro g h, exact !cast_ua ⬝ respect_mul φ g h ⬝ ap011 mul !cast_ua⁻¹ !cast_ua⁻¹
|
|
end
|
|
|
|
definition trivial_group_of_is_contr' (G : Group) [H : is_contr G] : G = G0 :=
|
|
eq_of_isomorphism (trivial_group_of_is_contr G)
|
|
|
|
definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) :
|
|
pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) :=
|
|
begin
|
|
induction p,
|
|
apply pequiv_eq,
|
|
fapply phomotopy.mk,
|
|
{ intro g, reflexivity },
|
|
{ apply is_prop.elim }
|
|
end
|
|
|
|
end group
|