280 lines
9.8 KiB
Text
280 lines
9.8 KiB
Text
/-
|
||
Copyright (c) 2014 Parikshit Khanna. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: data.list.basic
|
||
Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura
|
||
|
||
Basic properties of lists.
|
||
-/
|
||
|
||
import logic tools.helper_tactics data.nat.basic
|
||
|
||
open eq.ops helper_tactics nat
|
||
|
||
inductive list (T : Type) : Type :=
|
||
nil {} : list T,
|
||
cons : T → list T → list T
|
||
|
||
namespace list
|
||
notation h :: t := cons h t
|
||
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
|
||
|
||
variable {T : Type}
|
||
|
||
/- append -/
|
||
|
||
definition append : list T → list T → list T,
|
||
append nil l := l,
|
||
append (h :: s) t := h :: (append s t)
|
||
|
||
notation l₁ ++ l₂ := append l₁ l₂
|
||
|
||
theorem append_nil_left (t : list T) : nil ++ t = t
|
||
|
||
theorem append_cons (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t)
|
||
|
||
theorem append_nil_right : ∀ (t : list T), t ++ nil = t,
|
||
append_nil_right nil := rfl,
|
||
append_nil_right (a :: l) := calc
|
||
(a :: l) ++ nil = a :: (l ++ nil) : rfl
|
||
... = a :: l : append_nil_right l
|
||
|
||
theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u),
|
||
append.assoc nil t u := rfl,
|
||
append.assoc (a :: l) t u := calc
|
||
(a :: l) ++ t ++ u = a :: (l ++ t ++ u) : rfl
|
||
... = a :: (l ++ (t ++ u)) : append.assoc l t u
|
||
... = (a :: l) ++ (t ++ u) : rfl
|
||
|
||
/- length -/
|
||
|
||
definition length : list T → nat,
|
||
length nil := 0,
|
||
length (a :: l) := length l + 1
|
||
|
||
theorem length_nil : length (@nil T) = 0
|
||
|
||
theorem length_cons (x : T) (t : list T) : length (x::t) = length t + 1
|
||
|
||
theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length t,
|
||
length_append nil t := calc
|
||
length (nil ++ t) = length t : rfl
|
||
... = length nil + length t : zero_add,
|
||
length_append (a :: s) t := calc
|
||
length (a :: s ++ t) = length (s ++ t) + 1 : rfl
|
||
... = length s + length t + 1 : length_append s t
|
||
... = (length s + 1) + length t : add.succ_left
|
||
... = length (a :: s) + length t : rfl
|
||
|
||
-- add_rewrite length_nil length_cons
|
||
|
||
/- concat -/
|
||
|
||
definition concat : Π (x : T), list T → list T,
|
||
concat a nil := [a],
|
||
concat a (b :: l) := b :: concat a l
|
||
|
||
theorem concat_nil (x : T) : concat x nil = [x]
|
||
|
||
theorem concat_cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l)
|
||
|
||
theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a],
|
||
concat_eq_append nil := rfl,
|
||
concat_eq_append (b :: l) := calc
|
||
concat a (b :: l) = b :: (concat a l) : rfl
|
||
... = b :: (l ++ [a]) : concat_eq_append l
|
||
... = (b :: l) ++ [a] : rfl
|
||
|
||
-- add_rewrite append_nil append_cons
|
||
|
||
/- reverse -/
|
||
|
||
definition reverse : list T → list T,
|
||
reverse nil := nil,
|
||
reverse (a :: l) := concat a (reverse l)
|
||
|
||
theorem reverse_nil : reverse (@nil T) = nil
|
||
|
||
theorem reverse_cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l)
|
||
|
||
theorem reverse_singleton (x : T) : reverse [x] = [x]
|
||
|
||
theorem reverse_append : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s),
|
||
reverse_append nil t2 := calc
|
||
reverse (nil ++ t2) = reverse t2 : rfl
|
||
... = (reverse t2) ++ nil : (append_nil_right (reverse t2))⁻¹
|
||
... = (reverse t2) ++ (reverse nil) : {reverse_nil⁻¹},
|
||
reverse_append (a2 :: s2) t2 := calc
|
||
reverse ((a2 :: s2) ++ t2) = concat a2 (reverse (s2 ++ t2)) : rfl
|
||
... = concat a2 (reverse t2 ++ reverse s2) : {reverse_append s2 t2}
|
||
... = (reverse t2 ++ reverse s2) ++ [a2] : concat_eq_append
|
||
... = reverse t2 ++ (reverse s2 ++ [a2]) : append.assoc
|
||
... = reverse t2 ++ concat a2 (reverse s2) : {concat_eq_append a2 (reverse s2)⁻¹}
|
||
... = reverse t2 ++ reverse (a2 :: s2) : rfl
|
||
|
||
theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l,
|
||
reverse_reverse nil := rfl,
|
||
reverse_reverse (a :: l) := calc
|
||
reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl
|
||
... = reverse (reverse l ++ [a]) : concat_eq_append
|
||
... = reverse [a] ++ reverse (reverse l) : reverse_append
|
||
... = reverse [a] ++ l : reverse_reverse
|
||
... = a :: l : rfl
|
||
|
||
theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) :=
|
||
calc
|
||
concat x l = concat x (reverse (reverse l)) : {(reverse_reverse l)⁻¹}
|
||
... = reverse (x :: reverse l) : rfl
|
||
|
||
/- head and tail -/
|
||
|
||
definition head [h : inhabited T] : list T → T,
|
||
head nil := arbitrary T,
|
||
head (a :: l) := a
|
||
|
||
theorem head_cons [h : inhabited T] (a : T) (l : list T) : head (a::l) = a
|
||
|
||
theorem head_concat [h : inhabited T] {s : list T} (t : list T) : s ≠ nil → head (s ++ t) = head s :=
|
||
cases_on s
|
||
(take H : nil ≠ nil, absurd rfl H)
|
||
(take x s, take H : x::s ≠ nil,
|
||
calc
|
||
head (x::s ++ t) = head (x::(s ++ t)) : {!append_cons}
|
||
... = x : !head_cons
|
||
... = head (x::s) : !head_cons⁻¹)
|
||
|
||
definition tail : list T → list T,
|
||
tail nil := nil,
|
||
tail (a :: l) := l
|
||
|
||
theorem tail_nil : tail (@nil T) = nil
|
||
|
||
theorem tail_cons (a : T) (l : list T) : tail (a::l) = l
|
||
|
||
theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ nil → (head l)::(tail l) = l :=
|
||
cases_on l
|
||
(assume H : nil ≠ nil, absurd rfl H)
|
||
(take x l, assume H : x::l ≠ nil, rfl)
|
||
|
||
/- list membership -/
|
||
|
||
definition mem : T → list T → Prop,
|
||
mem a nil := false,
|
||
mem a (b :: l) := a = b ∨ mem a l
|
||
|
||
notation e ∈ s := mem e s
|
||
|
||
theorem mem_nil (x : T) : x ∈ nil ↔ false :=
|
||
iff.rfl
|
||
|
||
theorem mem_cons (x y : T) (l : list T) : x ∈ y::l ↔ (x = y ∨ x ∈ l) :=
|
||
iff.rfl
|
||
|
||
theorem mem_concat_imp_or {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t :=
|
||
induction_on s or.inr
|
||
(take y s,
|
||
assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t,
|
||
assume H1 : x ∈ y::s ++ t,
|
||
have H2 : x = y ∨ x ∈ s ++ t, from H1,
|
||
have H3 : x = y ∨ x ∈ s ∨ x ∈ t, from or_of_or_of_imp_right H2 IH,
|
||
iff.elim_right or.assoc H3)
|
||
|
||
theorem mem_or_imp_concat {x : T} {s t : list T} : x ∈ s ∨ x ∈ t → x ∈ s ++ t :=
|
||
induction_on s
|
||
(take H, or.elim H false.elim (assume H, H))
|
||
(take y s,
|
||
assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t,
|
||
assume H : x ∈ y::s ∨ x ∈ t,
|
||
or.elim H
|
||
(assume H1,
|
||
or.elim H1
|
||
(take H2 : x = y, or.inl H2)
|
||
(take H2 : x ∈ s, or.inr (IH (or.inl H2))))
|
||
(assume H1 : x ∈ t, or.inr (IH (or.inr H1))))
|
||
|
||
theorem mem_concat (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t :=
|
||
iff.intro mem_concat_imp_or mem_or_imp_concat
|
||
|
||
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
|
||
induction_on l
|
||
(take H : x ∈ nil, false.elim (iff.elim_left !mem_nil H))
|
||
(take y l,
|
||
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
|
||
assume H : x ∈ y::l,
|
||
or.elim H
|
||
(assume H1 : x = y,
|
||
exists.intro nil (!exists.intro (H1 ▸ rfl)))
|
||
(assume H1 : x ∈ l,
|
||
obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1,
|
||
obtain t (H3 : l = s ++ (x::t)), from H2,
|
||
have H4 : y :: l = (y::s) ++ (x::t),
|
||
from H3 ▸ rfl,
|
||
!exists.intro (!exists.intro H4)))
|
||
|
||
definition mem.is_decidable [instance] (H : decidable_eq T) (x : T) (l : list T) : decidable (x ∈ l) :=
|
||
rec_on l
|
||
(decidable.inr (not_of_iff_false !mem_nil))
|
||
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
|
||
show decidable (x ∈ h::l), from
|
||
decidable.rec_on iH
|
||
(assume Hp : x ∈ l,
|
||
decidable.rec_on (H x h)
|
||
(assume Heq : x = h,
|
||
decidable.inl (or.inl Heq))
|
||
(assume Hne : x ≠ h,
|
||
decidable.inl (or.inr Hp)))
|
||
(assume Hn : ¬x ∈ l,
|
||
decidable.rec_on (H x h)
|
||
(assume Heq : x = h,
|
||
decidable.inl (or.inl Heq))
|
||
(assume Hne : x ≠ h,
|
||
have H1 : ¬(x = h ∨ x ∈ l), from
|
||
assume H2 : x = h ∨ x ∈ l, or.elim H2
|
||
(assume Heq, absurd Heq Hne)
|
||
(assume Hp, absurd Hp Hn),
|
||
have H2 : ¬x ∈ h::l, from
|
||
iff.elim_right (not_iff_not_of_iff !mem_cons) H1,
|
||
decidable.inr H2)))
|
||
|
||
/- find -/
|
||
|
||
section
|
||
variable [H : decidable_eq T]
|
||
include H
|
||
|
||
definition find : T → list T → nat,
|
||
find a nil := 0,
|
||
find a (b :: l) := if a = b then 0 else succ (find a l)
|
||
|
||
theorem find_nil (x : T) : find x nil = 0
|
||
|
||
theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l)
|
||
|
||
theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l :=
|
||
rec_on l
|
||
(assume P₁ : ¬x ∈ nil, _)
|
||
(take y l,
|
||
assume iH : ¬x ∈ l → find x l = length l,
|
||
assume P₁ : ¬x ∈ y::l,
|
||
have P₂ : ¬(x = y ∨ x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons) P₁,
|
||
have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not P₂),
|
||
calc
|
||
find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons
|
||
... = succ (find x l) : if_neg (and.elim_left P₃)
|
||
... = succ (length l) : {iH (and.elim_right P₃)}
|
||
... = length (y::l) : !length_cons⁻¹)
|
||
end
|
||
|
||
/- nth element -/
|
||
|
||
definition nth [h : inhabited T] : list T → nat → T,
|
||
nth nil n := arbitrary T,
|
||
nth (a :: l) 0 := a,
|
||
nth (a :: l) (n+1) := nth l n
|
||
|
||
theorem nth_zero [h : inhabited T] (a : T) (l : list T) : nth (a :: l) 0 = a
|
||
|
||
theorem nth_succ [h : inhabited T] (a : T) (l : list T) (n : nat) : nth (a::l) (n+1) = nth l n
|
||
|
||
end list
|