42fbc63bb6
@avigad, @fpvandoorn, @rlewis1988, @dselsam I changed how transitive instances are named. The motivation is to avoid a naming collision problem found by Daniel. Before this commit, we were getting an error on the following file tests/lean/run/collision_bug.lean. Now, transitive instances contain the prefix "_trans_". It makes it clear this is an internal definition and it should not be used by users. This change also demonstrates (again) how the `rewrite` tactic is fragile. The problem is that the matching procedure used by it has very little support for solving matching constraints that involving type class instances. Eventually, we will need to reimplement `rewrite` using the new unification procedure used in blast. In the meantime, the workaround is to use `krewrite` (as usual).
707 lines
29 KiB
Text
707 lines
29 KiB
Text
/-
|
||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
Definitions and properties of div and mod, following the SSReflect library.
|
||
|
||
Following SSReflect and the SMTlib standard, we define a % b so that 0 ≤ a % b < |b| when b ≠ 0.
|
||
-/
|
||
import data.int.order data.nat.div
|
||
open [coercion] [reducible] nat
|
||
open [declaration] [class] nat (succ)
|
||
open eq.ops
|
||
|
||
namespace int
|
||
|
||
/- definitions -/
|
||
|
||
protected definition div (a b : ℤ) : ℤ :=
|
||
sign b *
|
||
(match a with
|
||
| of_nat m := of_nat (m / (nat_abs b))
|
||
| -[1+m] := -[1+ ((m:nat) / (nat_abs b))]
|
||
end)
|
||
|
||
definition int_has_div [reducible] [instance] [priority int.prio] : has_div int :=
|
||
has_div.mk int.div
|
||
|
||
lemma of_nat_div_eq (m : nat) (b : ℤ) : (of_nat m) / b = sign b * of_nat (m / (nat_abs b)) :=
|
||
rfl
|
||
|
||
lemma neg_succ_div_eq (m: nat) (b : ℤ) : -[1+m] / b = sign b * -[1+ (m / (nat_abs b))] :=
|
||
rfl
|
||
|
||
lemma div_def (a b : ℤ) : a / b =
|
||
sign b *
|
||
(match a with
|
||
| of_nat m := of_nat (m / (nat_abs b))
|
||
| -[1+m] := -[1+ ((m:nat) / (nat_abs b))]
|
||
end) :=
|
||
rfl
|
||
|
||
protected definition mod (a b : ℤ) : ℤ := a - a / b * b
|
||
|
||
definition int_has_mod [reducible] [instance] [priority int.prio] : has_mod int :=
|
||
has_mod.mk int.mod
|
||
|
||
|
||
lemma mod_def (a b : ℤ) : a % b = a - a / b * b :=
|
||
rfl
|
||
|
||
notation [priority int.prio] a ≡ b `[mod `:0 c:0 `]` := a % c = b % c
|
||
|
||
/- / -/
|
||
|
||
theorem of_nat_div (m n : nat) : of_nat (m / n) = (of_nat m) / (of_nat n) :=
|
||
nat.cases_on n
|
||
(begin rewrite [of_nat_div_eq, of_nat_zero, sign_zero, zero_mul, nat.div_zero] end)
|
||
(take (n : nat), by rewrite [of_nat_div_eq, sign_of_succ, one_mul])
|
||
|
||
theorem neg_succ_of_nat_div (m : nat) {b : ℤ} (H : b > 0) :
|
||
-[1+m] / b = -(m / b + 1) :=
|
||
calc
|
||
-[1+m] / b = sign b * _ : rfl
|
||
... = -[1+(m / (nat_abs b))] : by rewrite [sign_of_pos H, one_mul]
|
||
... = -(m / b + 1) : by rewrite [of_nat_div_eq, sign_of_pos H, one_mul]
|
||
|
||
protected theorem div_neg (a b : ℤ) : a / -b = -(a / b) :=
|
||
begin
|
||
induction a,
|
||
rewrite [*of_nat_div_eq, sign_neg, neg_mul_eq_neg_mul, nat_abs_neg],
|
||
rewrite [*neg_succ_div_eq, sign_neg, neg_mul_eq_neg_mul, nat_abs_neg],
|
||
end
|
||
|
||
theorem div_of_neg_of_pos {a b : ℤ} (Ha : a < 0) (Hb : b > 0) : a / b = -((-a - 1) / b + 1) :=
|
||
obtain (m : nat) (H1 : a = -[1+m]), from exists_eq_neg_succ_of_nat Ha,
|
||
calc
|
||
a / b = -(m / b + 1) : by rewrite [H1, neg_succ_of_nat_div _ Hb]
|
||
... = -((-a -1) / b + 1) : by rewrite [H1, neg_succ_of_nat_eq', neg_sub, sub_neg_eq_add,
|
||
add.comm 1, add_sub_cancel]
|
||
|
||
protected theorem div_nonneg {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≥ 0) : a / b ≥ 0 :=
|
||
obtain (m : ℕ) (Hm : a = m), from exists_eq_of_nat Ha,
|
||
obtain (n : ℕ) (Hn : b = n), from exists_eq_of_nat Hb,
|
||
calc
|
||
a / b = m / n : by rewrite [Hm, Hn]
|
||
... ≥ 0 : by rewrite -of_nat_div; apply trivial
|
||
|
||
protected theorem div_nonpos {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≤ 0) : a / b ≤ 0 :=
|
||
calc
|
||
a / b = -(a / -b) : by rewrite [int.div_neg, neg_neg]
|
||
... ≤ 0 : neg_nonpos_of_nonneg (int.div_nonneg Ha (neg_nonneg_of_nonpos Hb))
|
||
|
||
theorem div_neg' {a b : ℤ} (Ha : a < 0) (Hb : b > 0) : a / b < 0 :=
|
||
have -a - 1 ≥ 0, from le_sub_one_of_lt (neg_pos_of_neg Ha),
|
||
have (-a - 1) / b + 1 > 0, from lt_add_one_of_le (int.div_nonneg this (le_of_lt Hb)),
|
||
calc
|
||
a / b = -((-a - 1) / b + 1) : div_of_neg_of_pos Ha Hb
|
||
... < 0 : neg_neg_of_pos this
|
||
|
||
protected theorem zero_div (b : ℤ) : 0 / b = 0 :=
|
||
by krewrite [of_nat_div_eq, nat.zero_div, of_nat_zero, mul_zero]
|
||
|
||
protected theorem div_zero (a : ℤ) : a / 0 = 0 :=
|
||
by rewrite [div_def, sign_zero, zero_mul]
|
||
|
||
protected theorem div_one (a : ℤ) : a / 1 = a :=
|
||
assert (1 : int) > 0, from dec_trivial,
|
||
int.cases_on a
|
||
(take m : nat, by rewrite [-of_nat_one, -of_nat_div, nat.div_one])
|
||
(take m : nat, by rewrite [!neg_succ_of_nat_div this, -of_nat_one, -of_nat_div, nat.div_one])
|
||
|
||
theorem eq_div_mul_add_mod (a b : ℤ) : a = a / b * b + a % b :=
|
||
!add.comm ▸ eq_add_of_sub_eq rfl
|
||
|
||
theorem div_eq_zero_of_lt {a b : ℤ} : 0 ≤ a → a < b → a / b = 0 :=
|
||
int.cases_on a
|
||
(take (m : nat), assume H,
|
||
int.cases_on b
|
||
(take (n : nat),
|
||
assume H : m < n,
|
||
show m / n = 0,
|
||
by rewrite [-of_nat_div, nat.div_eq_zero_of_lt (lt_of_of_nat_lt_of_nat H)])
|
||
(take (n : nat),
|
||
assume H : m < -[1+n],
|
||
have H1 : ¬(m < -[1+n]), from dec_trivial,
|
||
absurd H H1))
|
||
(take (m : nat),
|
||
assume H : 0 ≤ -[1+m],
|
||
have ¬ (0 ≤ -[1+m]), from dec_trivial,
|
||
absurd H this)
|
||
|
||
theorem div_eq_zero_of_lt_abs {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < abs b) : a / b = 0 :=
|
||
lt.by_cases
|
||
(suppose b < 0,
|
||
assert a < -b, from abs_of_neg this ▸ H2,
|
||
calc
|
||
a / b = - (a / -b) : by rewrite [int.div_neg, neg_neg]
|
||
... = 0 : by rewrite [div_eq_zero_of_lt H1 this, neg_zero])
|
||
(suppose b = 0, this⁻¹ ▸ !int.div_zero)
|
||
(suppose b > 0,
|
||
have a < b, from abs_of_pos this ▸ H2,
|
||
div_eq_zero_of_lt H1 this)
|
||
|
||
private theorem add_mul_div_self_aux1 {a : ℤ} {k : ℕ} (n : ℕ) (H1 : a ≥ 0) (H2 : k > 0) :
|
||
(a + n * k) / k = a / k + n :=
|
||
obtain (m : nat) (Hm : a = of_nat m), from exists_eq_of_nat H1,
|
||
begin
|
||
subst Hm,
|
||
rewrite [-of_nat_mul, -of_nat_add, -*of_nat_div, -of_nat_add, !nat.add_mul_div_self H2]
|
||
end
|
||
|
||
private theorem add_mul_div_self_aux2 {a : ℤ} {k : ℕ} (n : ℕ) (H1 : a < 0) (H2 : k > 0) :
|
||
(a + n * k) / k = a / k + n :=
|
||
obtain m (Hm : a = -[1+m]), from exists_eq_neg_succ_of_nat H1,
|
||
or.elim (nat.lt_or_ge m (n * k))
|
||
(assume m_lt_nk : m < n * k,
|
||
assert H3 : m + 1 ≤ n * k, from nat.succ_le_of_lt m_lt_nk,
|
||
assert H4 : m / k + 1 ≤ n,
|
||
from nat.succ_le_of_lt (nat.div_lt_of_lt_mul m_lt_nk),
|
||
have (-[1+m] + n * k) / k = -[1+m] / k + n, from calc
|
||
(-[1+m] + n * k) / k
|
||
= of_nat ((k * n - (m + 1)) / k) :
|
||
by rewrite [add.comm, neg_succ_of_nat_eq, of_nat_div, mul.comm k n,
|
||
of_nat_sub H3]
|
||
... = of_nat (n - m / k - 1) :
|
||
nat.mul_sub_div_of_lt (!nat.mul_comm ▸ m_lt_nk)
|
||
... = -[1+m] / k + n :
|
||
by rewrite [nat.sub_sub, of_nat_sub H4, int.add_comm, sub_eq_add_neg,
|
||
!neg_succ_of_nat_div (of_nat_lt_of_nat_of_lt H2),
|
||
of_nat_add, of_nat_div],
|
||
Hm⁻¹ ▸ this)
|
||
(assume nk_le_m : n * k ≤ m,
|
||
have -[1+m] / k + n = (-[1+m] + n * k) / k, from calc
|
||
-[1+m] / k + n
|
||
= -(of_nat ((m - n * k + n * k) / k) + 1) + n :
|
||
by rewrite [neg_succ_of_nat_div m (of_nat_lt_of_nat_of_lt H2),
|
||
nat.sub_add_cancel nk_le_m, of_nat_div]
|
||
... = -(of_nat ((m - n * k) / k + n) + 1) + n : nat.add_mul_div_self H2
|
||
... = -(of_nat (m - n * k) / k + 1) :
|
||
by rewrite [of_nat_add, *neg_add, add.right_comm, neg_add_cancel_right,
|
||
of_nat_div]
|
||
... = -[1+(m - n * k)] / k :
|
||
neg_succ_of_nat_div _ (of_nat_lt_of_nat_of_lt H2)
|
||
... = -(of_nat(m - n * k) + 1) / k : rfl
|
||
... = -(of_nat m - of_nat(n * k) + 1) / k : of_nat_sub nk_le_m
|
||
... = (-(of_nat m + 1) + n * k) / k :
|
||
by rewrite [sub_eq_add_neg, -*add.assoc, *neg_add, neg_neg, add.right_comm]
|
||
... = (-[1+m] + n * k) / k : rfl,
|
||
Hm⁻¹ ▸ this⁻¹)
|
||
|
||
private theorem add_mul_div_self_aux3 (a : ℤ) {b c : ℤ} (H1 : b ≥ 0) (H2 : c > 0) :
|
||
(a + b * c) / c = a / c + b :=
|
||
obtain (n : nat) (Hn : b = of_nat n), from exists_eq_of_nat H1,
|
||
obtain (k : nat) (Hk : c = of_nat k), from exists_eq_of_nat (le_of_lt H2),
|
||
have knz : k ≠ 0, from assume kz, !lt.irrefl (kz ▸ Hk ▸ H2),
|
||
have kgt0 : (#nat k > 0), from nat.pos_of_ne_zero knz,
|
||
have H3 : (a + n * k) / k = a / k + n, from
|
||
or.elim (lt_or_ge a 0)
|
||
(assume Ha : a < 0, add_mul_div_self_aux2 _ Ha kgt0)
|
||
(assume Ha : a ≥ 0, add_mul_div_self_aux1 _ Ha kgt0),
|
||
Hn⁻¹ ▸ Hk⁻¹ ▸ H3
|
||
|
||
private theorem add_mul_div_self_aux4 (a b : ℤ) {c : ℤ} (H : c > 0) :
|
||
(a + b * c) / c = a / c + b :=
|
||
or.elim (le.total 0 b)
|
||
(assume H1 : 0 ≤ b, add_mul_div_self_aux3 _ H1 H)
|
||
(assume H1 : 0 ≥ b,
|
||
eq.symm (calc
|
||
a / c + b = (a + b * c + -b * c) / c + b :
|
||
by rewrite [-neg_mul_eq_neg_mul, add_neg_cancel_right]
|
||
... = (a + b * c) / c + - b + b :
|
||
add_mul_div_self_aux3 _ (neg_nonneg_of_nonpos H1) H
|
||
... = (a + b * c) / c : neg_add_cancel_right))
|
||
|
||
protected theorem add_mul_div_self (a b : ℤ) {c : ℤ} (H : c ≠ 0) :
|
||
(a + b * c) / c = a / c + b :=
|
||
lt.by_cases
|
||
(assume H1 : 0 < c, !add_mul_div_self_aux4 H1)
|
||
(assume H1 : 0 = c, absurd H1⁻¹ H)
|
||
(assume H1 : 0 > c,
|
||
have H2 : -c > 0, from neg_pos_of_neg H1,
|
||
calc
|
||
(a + b * c) / c = - ((a + -b * -c) / -c) : by rewrite [int.div_neg, neg_mul_neg, neg_neg]
|
||
... = -(a / -c + -b) : !add_mul_div_self_aux4 H2
|
||
... = a / c + b : by rewrite [int.div_neg, neg_add, *neg_neg])
|
||
|
||
protected theorem add_mul_div_self_left (a : ℤ) {b : ℤ} (c : ℤ) (H : b ≠ 0) :
|
||
(a + b * c) / b = a / b + c :=
|
||
!mul.comm ▸ !int.add_mul_div_self H
|
||
|
||
protected theorem mul_div_cancel (a : ℤ) {b : ℤ} (H : b ≠ 0) : a * b / b = a :=
|
||
calc
|
||
a * b / b = (0 + a * b) / b : zero_add
|
||
... = 0 / b + a : !int.add_mul_div_self H
|
||
... = a : by rewrite [int.zero_div, zero_add]
|
||
|
||
protected theorem mul_div_cancel_left {a : ℤ} (b : ℤ) (H : a ≠ 0) : a * b / a = b :=
|
||
!mul.comm ▸ int.mul_div_cancel b H
|
||
|
||
protected theorem div_self {a : ℤ} (H : a ≠ 0) : a / a = 1 :=
|
||
!mul_one ▸ !int.mul_div_cancel_left H
|
||
|
||
/- mod -/
|
||
|
||
theorem of_nat_mod (m n : nat) : m % n = of_nat (m % n) :=
|
||
have H : m = of_nat (m % n) + m / n * n, from calc
|
||
m = of_nat (m / n * n + m % n) : nat.eq_div_mul_add_mod
|
||
... = of_nat (m / n) * n + of_nat (m % n) : rfl
|
||
... = m / n * n + of_nat (m % n) : of_nat_div
|
||
... = of_nat (m % n) + m / n * n : add.comm,
|
||
calc
|
||
m % n = m - m / n * n : rfl
|
||
... = of_nat (m % n) : sub_eq_of_eq_add H
|
||
|
||
theorem neg_succ_of_nat_mod (m : ℕ) {b : ℤ} (bpos : b > 0) :
|
||
-[1+m] % b = b - 1 - m % b :=
|
||
calc
|
||
-[1+m] % b = -(m + 1) - -[1+m] / b * b : rfl
|
||
... = -(m + 1) - -(m / b + 1) * b : neg_succ_of_nat_div _ bpos
|
||
... = -m + -1 + (b + m / b * b) :
|
||
by rewrite [neg_add, -neg_mul_eq_neg_mul, sub_neg_eq_add, right_distrib,
|
||
one_mul, (add.comm b)]
|
||
... = b + -1 + (-m + m / b * b) :
|
||
by rewrite [-*add.assoc, add.comm (-m), add.right_comm (-1), (add.comm b)]
|
||
... = b - 1 - m % b :
|
||
by rewrite [(mod_def), *sub_eq_add_neg, neg_add, neg_neg]
|
||
-- it seems the parser has difficulty here, because "mod" is a token?
|
||
|
||
theorem mod_neg (a b : ℤ) : a % -b = a % b :=
|
||
calc
|
||
a % -b = a - (a / -b) * -b : rfl
|
||
... = a - -(a / b) * -b : int.div_neg
|
||
... = a - a / b * b : neg_mul_neg
|
||
... = a % b : rfl
|
||
|
||
theorem mod_abs (a b : ℤ) : a % (abs b) = a % b :=
|
||
abs.by_cases rfl !mod_neg
|
||
|
||
theorem zero_mod (b : ℤ) : 0 % b = 0 :=
|
||
by rewrite [(mod_def), int.zero_div, zero_mul, sub_zero]
|
||
|
||
theorem mod_zero (a : ℤ) : a % 0 = a :=
|
||
by rewrite [(mod_def), mul_zero, sub_zero]
|
||
|
||
theorem mod_one (a : ℤ) : a % 1 = 0 :=
|
||
calc
|
||
a % 1 = a - a / 1 * 1 : rfl
|
||
... = 0 : by rewrite [mul_one, int.div_one, sub_self]
|
||
|
||
private lemma of_nat_mod_abs (m : ℕ) (b : ℤ) : m % (abs b) = of_nat (m % (nat_abs b)) :=
|
||
calc
|
||
m % (abs b) = m % (nat_abs b) : of_nat_nat_abs
|
||
... = of_nat (m % (nat_abs b)) : of_nat_mod
|
||
|
||
private lemma of_nat_mod_abs_lt (m : ℕ) {b : ℤ} (H : b ≠ 0) : m % (abs b) < (abs b) :=
|
||
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
|
||
have H2 : (#nat nat_abs b > 0), from lt_of_of_nat_lt_of_nat (!of_nat_nat_abs⁻¹ ▸ H1),
|
||
calc
|
||
m % (abs b) = of_nat (m % (nat_abs b)) : of_nat_mod_abs m b
|
||
... < nat_abs b : of_nat_lt_of_nat_of_lt (!nat.mod_lt H2)
|
||
... = abs b : of_nat_nat_abs _
|
||
|
||
theorem mod_eq_of_lt {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < b) : a % b = a :=
|
||
obtain (m : nat) (Hm : a = of_nat m), from exists_eq_of_nat H1,
|
||
obtain (n : nat) (Hn : b = of_nat n), from exists_eq_of_nat (le_of_lt (lt_of_le_of_lt H1 H2)),
|
||
begin
|
||
revert H2,
|
||
rewrite [Hm, Hn, of_nat_mod, of_nat_lt_of_nat_iff, of_nat_eq_of_nat_iff],
|
||
apply nat.mod_eq_of_lt
|
||
end
|
||
|
||
theorem mod_nonneg (a : ℤ) {b : ℤ} (H : b ≠ 0) : a % b ≥ 0 :=
|
||
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
|
||
have H2 : a % (abs b) ≥ 0, from
|
||
int.cases_on a
|
||
(take m : nat, (of_nat_mod_abs m b)⁻¹ ▸ of_nat_nonneg (nat.mod m (nat_abs b)))
|
||
(take m : nat,
|
||
have H3 : 1 + m % (abs b) ≤ (abs b),
|
||
from (!add.comm ▸ add_one_le_of_lt (of_nat_mod_abs_lt m H)),
|
||
calc
|
||
-[1+m] % (abs b) = abs b - 1 - m % (abs b) : neg_succ_of_nat_mod _ H1
|
||
... = abs b - (1 + m % (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc]
|
||
... ≥ 0 : iff.mpr !sub_nonneg_iff_le H3),
|
||
!mod_abs ▸ H2
|
||
|
||
theorem mod_lt (a : ℤ) {b : ℤ} (H : b ≠ 0) : a % b < (abs b) :=
|
||
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
|
||
have H2 : a % (abs b) < abs b, from
|
||
int.cases_on a
|
||
(take m, of_nat_mod_abs_lt m H)
|
||
(take m : nat,
|
||
have H3 : abs b ≠ 0, from assume H', H (eq_zero_of_abs_eq_zero H'),
|
||
have H4 : 1 + m % (abs b) > 0,
|
||
from add_pos_of_pos_of_nonneg dec_trivial (mod_nonneg _ H3),
|
||
calc
|
||
-[1+m] % (abs b) = abs b - 1 - m % (abs b) : neg_succ_of_nat_mod _ H1
|
||
... = abs b - (1 + m % (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc]
|
||
... < abs b : sub_lt_self _ H4),
|
||
!mod_abs ▸ H2
|
||
|
||
theorem add_mul_mod_self {a b c : ℤ} : (a + b * c) % c = a % c :=
|
||
decidable.by_cases
|
||
(assume cz : c = 0, by rewrite [cz, mul_zero, add_zero])
|
||
(assume cnz, by rewrite [(mod_def), !int.add_mul_div_self cnz, right_distrib,
|
||
sub_add_eq_sub_sub_swap, add_sub_cancel])
|
||
|
||
theorem add_mul_mod_self_left (a b c : ℤ) : (a + b * c) % b = a % b :=
|
||
!mul.comm ▸ !add_mul_mod_self
|
||
|
||
theorem add_mod_self {a b : ℤ} : (a + b) % b = a % b :=
|
||
by rewrite -(int.mul_one b) at {1}; apply add_mul_mod_self_left
|
||
|
||
theorem add_mod_self_left {a b : ℤ} : (a + b) % a = b % a :=
|
||
!add.comm ▸ !add_mod_self
|
||
|
||
theorem mod_add_mod (m n k : ℤ) : (m % n + k) % n = (m + k) % n :=
|
||
by rewrite [eq_div_mul_add_mod m n at {2}, add.assoc, add.comm (m / n * n), add_mul_mod_self]
|
||
|
||
theorem add_mod_mod (m n k : ℤ) : (m + n % k) % k = (m + n) % k :=
|
||
by rewrite [add.comm, mod_add_mod, add.comm]
|
||
|
||
theorem add_mod_eq_add_mod_right {m n k : ℤ} (i : ℤ) (H : m % n = k % n) :
|
||
(m + i) % n = (k + i) % n :=
|
||
by rewrite [-mod_add_mod, -mod_add_mod k, H]
|
||
|
||
theorem add_mod_eq_add_mod_left {m n k : ℤ} (i : ℤ) (H : m % n = k % n) :
|
||
(i + m) % n = (i + k) % n :=
|
||
by rewrite [add.comm, add_mod_eq_add_mod_right _ H, add.comm]
|
||
|
||
theorem mod_eq_mod_of_add_mod_eq_add_mod_right {m n k i : ℤ}
|
||
(H : (m + i) % n = (k + i) % n) :
|
||
m % n = k % n :=
|
||
assert H1 : (m + i + (-i)) % n = (k + i + (-i)) % n, from add_mod_eq_add_mod_right _ H,
|
||
by rewrite [*add_neg_cancel_right at H1]; apply H1
|
||
|
||
theorem mod_eq_mod_of_add_mod_eq_add_mod_left {m n k i : ℤ} :
|
||
(i + m) % n = (i + k) % n → m % n = k % n :=
|
||
by rewrite [add.comm i m, add.comm i k]; apply mod_eq_mod_of_add_mod_eq_add_mod_right
|
||
|
||
theorem mul_mod_left (a b : ℤ) : (a * b) % b = 0 :=
|
||
by rewrite [-zero_add (a * b), add_mul_mod_self, zero_mod]
|
||
|
||
theorem mul_mod_right (a b : ℤ) : (a * b) % a = 0 :=
|
||
!mul.comm ▸ !mul_mod_left
|
||
|
||
theorem mod_self {a : ℤ} : a % a = 0 :=
|
||
decidable.by_cases
|
||
(assume H : a = 0, H⁻¹ ▸ !mod_zero)
|
||
(assume H : a ≠ 0,
|
||
calc
|
||
a % a = a - a / a * a : rfl
|
||
... = 0 : by rewrite [!int.div_self H, one_mul, sub_self])
|
||
|
||
theorem mod_lt_of_pos (a : ℤ) {b : ℤ} (H : b > 0) : a % b < b :=
|
||
!abs_of_pos H ▸ !mod_lt (ne.symm (ne_of_lt H))
|
||
|
||
/- properties of / and % -/
|
||
|
||
theorem mul_div_mul_of_pos_aux {a : ℤ} (b : ℤ) {c : ℤ}
|
||
(H1 : a > 0) (H2 : c > 0) : a * b / (a * c) = b / c :=
|
||
have H3 : a * c ≠ 0, from ne.symm (ne_of_lt (mul_pos H1 H2)),
|
||
have H4 : a * (b % c) < a * c, from mul_lt_mul_of_pos_left (!mod_lt_of_pos H2) H1,
|
||
have H5 : a * (b % c) ≥ 0, from mul_nonneg (le_of_lt H1) (!mod_nonneg (ne.symm (ne_of_lt H2))),
|
||
calc
|
||
a * b / (a * c) = a * (b / c * c + b % c) / (a * c) : eq_div_mul_add_mod
|
||
|
||
... = (a * (b % c) + a * c * (b / c)) / (a * c) :
|
||
by rewrite [!add.comm, int.left_distrib, mul.comm _ c, -!mul.assoc]
|
||
... = a * (b % c) / (a * c) + b / c : !int.add_mul_div_self_left H3
|
||
... = 0 + b / c : {!div_eq_zero_of_lt H5 H4}
|
||
... = b / c : zero_add
|
||
|
||
theorem mul_div_mul_of_pos {a : ℤ} (b c : ℤ) (H : a > 0) : a * b / (a * c) = b / c :=
|
||
lt.by_cases
|
||
(assume H1 : c < 0,
|
||
have H2 : -c > 0, from neg_pos_of_neg H1,
|
||
calc
|
||
a * b / (a * c) = - (a * b / (a * -c)) :
|
||
by rewrite [-neg_mul_eq_mul_neg, int.div_neg, neg_neg]
|
||
... = - (b / -c) : mul_div_mul_of_pos_aux _ H H2
|
||
... = b / c : by rewrite [int.div_neg, neg_neg])
|
||
(assume H1 : c = 0,
|
||
calc
|
||
a * b / (a * c) = 0 : by rewrite [H1, mul_zero, int.div_zero]
|
||
... = b / c : by rewrite [H1, int.div_zero])
|
||
(assume H1 : c > 0,
|
||
mul_div_mul_of_pos_aux _ H H1)
|
||
|
||
theorem mul_div_mul_of_pos_left (a : ℤ) {b : ℤ} (c : ℤ) (H : b > 0) :
|
||
a * b / (c * b) = a / c :=
|
||
!mul.comm ▸ !mul.comm ▸ !mul_div_mul_of_pos H
|
||
|
||
theorem mul_mod_mul_of_pos {a : ℤ} (b c : ℤ) (H : a > 0) : a * b % (a * c) = a * (b % c) :=
|
||
by rewrite [(mod_def), mod_def, !mul_div_mul_of_pos H, mul_sub_left_distrib, mul.left_comm]
|
||
|
||
theorem lt_div_add_one_mul_self (a : ℤ) {b : ℤ} (H : b > 0) : a < (a / b + 1) * b :=
|
||
have H : a - a / b * b < b, from !mod_lt_of_pos H,
|
||
calc
|
||
a < a / b * b + b : iff.mpr !lt_add_iff_sub_lt_left H
|
||
... = (a / b + 1) * b : by rewrite [right_distrib, one_mul]
|
||
|
||
theorem div_le_of_nonneg_of_nonneg {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≥ 0) : a / b ≤ a :=
|
||
obtain (m : ℕ) (Hm : a = m), from exists_eq_of_nat Ha,
|
||
obtain (n : ℕ) (Hn : b = n), from exists_eq_of_nat Hb,
|
||
calc
|
||
a / b = of_nat (m / n) : by rewrite [Hm, Hn, of_nat_div]
|
||
... ≤ m : of_nat_le_of_nat_of_le !nat.div_le_self
|
||
... = a : Hm
|
||
|
||
theorem abs_div_le_abs (a b : ℤ) : abs (a / b) ≤ abs a :=
|
||
have H : ∀a b, b > 0 → abs (a / b) ≤ abs a, from
|
||
take a b,
|
||
assume H1 : b > 0,
|
||
or.elim (le_or_gt 0 a)
|
||
(assume H2 : 0 ≤ a,
|
||
have H3 : 0 ≤ b, from le_of_lt H1,
|
||
calc
|
||
abs (a / b) = a / b : abs_of_nonneg (int.div_nonneg H2 H3)
|
||
... ≤ a : div_le_of_nonneg_of_nonneg H2 H3
|
||
... = abs a : abs_of_nonneg H2)
|
||
(assume H2 : a < 0,
|
||
have H3 : -a - 1 ≥ 0, from le_sub_one_of_lt (neg_pos_of_neg H2),
|
||
have H4 : (-a - 1) / b + 1 ≥ 0,
|
||
from add_nonneg (int.div_nonneg H3 (le_of_lt H1)) (of_nat_le_of_nat_of_le !nat.zero_le),
|
||
have H5 : (-a - 1) / b ≤ -a - 1, from div_le_of_nonneg_of_nonneg H3 (le_of_lt H1),
|
||
calc
|
||
abs (a / b) = abs ((-a - 1) / b + 1) : by rewrite [div_of_neg_of_pos H2 H1, abs_neg]
|
||
... = (-a - 1) / b + 1 : abs_of_nonneg H4
|
||
... ≤ -a - 1 + 1 : add_le_add_right H5 _
|
||
... = abs a : by rewrite [sub_add_cancel, abs_of_neg H2]),
|
||
lt.by_cases
|
||
(assume H1 : b < 0,
|
||
calc
|
||
abs (a / b) = abs (a / -b) : by rewrite [int.div_neg, abs_neg]
|
||
... ≤ abs a : H _ _ (neg_pos_of_neg H1))
|
||
(assume H1 : b = 0,
|
||
calc
|
||
abs (a / b) = 0 : by rewrite [H1, int.div_zero, abs_zero]
|
||
... ≤ abs a : abs_nonneg)
|
||
(assume H1 : b > 0, H _ _ H1)
|
||
|
||
theorem div_mul_cancel_of_mod_eq_zero {a b : ℤ} (H : a % b = 0) : a / b * b = a :=
|
||
by rewrite [eq_div_mul_add_mod a b at {2}, H, add_zero]
|
||
|
||
theorem mul_div_cancel_of_mod_eq_zero {a b : ℤ} (H : a % b = 0) : b * (a / b) = a :=
|
||
!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H
|
||
|
||
/- dvd -/
|
||
|
||
theorem dvd_of_of_nat_dvd_of_nat {m n : ℕ} : of_nat m ∣ of_nat n → (#nat m ∣ n) :=
|
||
nat.by_cases_zero_pos n
|
||
(assume H, dvd_zero m)
|
||
(take n' : ℕ,
|
||
assume H1 : (#nat n' > 0),
|
||
have H2 : of_nat n' > 0, from of_nat_pos H1,
|
||
assume H3 : of_nat m ∣ of_nat n',
|
||
dvd.elim H3
|
||
(take c,
|
||
assume H4 : of_nat n' = of_nat m * c,
|
||
have H5 : c > 0, from pos_of_mul_pos_left (H4 ▸ H2) !of_nat_nonneg,
|
||
obtain k (H6 : c = of_nat k), from exists_eq_of_nat (le_of_lt H5),
|
||
have H7 : n' = (#nat m * k), from (of_nat.inj (H6 ▸ H4)),
|
||
dvd.intro H7⁻¹))
|
||
|
||
theorem of_nat_dvd_of_nat_of_dvd {m n : ℕ} (H : #nat m ∣ n) : of_nat m ∣ of_nat n :=
|
||
dvd.elim H
|
||
(take k, assume H1 : #nat n = m * k,
|
||
dvd.intro (H1⁻¹ ▸ rfl))
|
||
|
||
theorem of_nat_dvd_of_nat_iff (m n : ℕ) : of_nat m ∣ of_nat n ↔ m ∣ n :=
|
||
iff.intro dvd_of_of_nat_dvd_of_nat of_nat_dvd_of_nat_of_dvd
|
||
|
||
theorem dvd.antisymm {a b : ℤ} (H1 : a ≥ 0) (H2 : b ≥ 0) : a ∣ b → b ∣ a → a = b :=
|
||
begin
|
||
rewrite [-abs_of_nonneg H1, -abs_of_nonneg H2, -*of_nat_nat_abs],
|
||
rewrite [*of_nat_dvd_of_nat_iff, *of_nat_eq_of_nat_iff],
|
||
apply nat.dvd.antisymm
|
||
end
|
||
|
||
theorem dvd_of_mod_eq_zero {a b : ℤ} (H : b % a = 0) : a ∣ b :=
|
||
dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H)
|
||
|
||
theorem mod_eq_zero_of_dvd {a b : ℤ} (H : a ∣ b) : b % a = 0 :=
|
||
dvd.elim H (take z, assume H1 : b = a * z, H1⁻¹ ▸ !mul_mod_right)
|
||
|
||
theorem dvd_iff_mod_eq_zero (a b : ℤ) : a ∣ b ↔ b % a = 0 :=
|
||
iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero
|
||
|
||
definition dvd.decidable_rel [instance] : decidable_rel dvd :=
|
||
take a n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero)
|
||
|
||
protected theorem div_mul_cancel {a b : ℤ} (H : b ∣ a) : a / b * b = a :=
|
||
div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H)
|
||
|
||
protected theorem mul_div_cancel' {a b : ℤ} (H : a ∣ b) : a * (b / a) = b :=
|
||
!mul.comm ▸ !int.div_mul_cancel H
|
||
|
||
protected theorem mul_div_assoc (a : ℤ) {b c : ℤ} (H : c ∣ b) : (a * b) / c = a * (b / c) :=
|
||
decidable.by_cases
|
||
(assume cz : c = 0, by rewrite [cz, *int.div_zero, mul_zero])
|
||
(assume cnz : c ≠ 0,
|
||
obtain d (H' : b = d * c), from exists_eq_mul_left_of_dvd H,
|
||
by rewrite [H', -mul.assoc, *(!int.mul_div_cancel cnz)])
|
||
|
||
theorem div_dvd_div {a b c : ℤ} (H1 : a ∣ b) (H2 : b ∣ c) : b / a ∣ c / a :=
|
||
have H3 : b = b / a * a, from (int.div_mul_cancel H1)⁻¹,
|
||
have H4 : c = c / a * a, from (int.div_mul_cancel (dvd.trans H1 H2))⁻¹,
|
||
decidable.by_cases
|
||
(assume H5 : a = 0,
|
||
have H6: c / a = 0, from (congr_arg _ H5 ⬝ !int.div_zero),
|
||
H6⁻¹ ▸ !dvd_zero)
|
||
(assume H5 : a ≠ 0,
|
||
dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2))
|
||
|
||
protected theorem div_eq_iff_eq_mul_right {a b : ℤ} (c : ℤ) (H : b ≠ 0) (H' : b ∣ a) :
|
||
a / b = c ↔ a = b * c :=
|
||
iff.intro
|
||
(assume H1, by rewrite [-H1, int.mul_div_cancel' H'])
|
||
(assume H1, by rewrite [H1, !int.mul_div_cancel_left H])
|
||
|
||
protected theorem div_eq_iff_eq_mul_left {a b : ℤ} (c : ℤ) (H : b ≠ 0) (H' : b ∣ a) :
|
||
a / b = c ↔ a = c * b :=
|
||
!mul.comm ▸ !int.div_eq_iff_eq_mul_right H H'
|
||
|
||
protected theorem eq_mul_of_div_eq_right {a b c : ℤ} (H1 : b ∣ a) (H2 : a / b = c) :
|
||
a = b * c :=
|
||
calc
|
||
a = b * (a / b) : int.mul_div_cancel' H1
|
||
... = b * c : H2
|
||
|
||
protected theorem div_eq_of_eq_mul_right {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = b * c) :
|
||
a / b = c :=
|
||
calc
|
||
a / b = b * c / b : H2
|
||
... = c : !int.mul_div_cancel_left H1
|
||
|
||
protected theorem eq_mul_of_div_eq_left {a b c : ℤ} (H1 : b ∣ a) (H2 : a / b = c) :
|
||
a = c * b :=
|
||
!mul.comm ▸ !int.eq_mul_of_div_eq_right H1 H2
|
||
|
||
protected theorem div_eq_of_eq_mul_left {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = c * b) :
|
||
a / b = c :=
|
||
int.div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2)
|
||
|
||
theorem neg_div_of_dvd {a b : ℤ} (H : b ∣ a) : -a / b = -(a / b) :=
|
||
decidable.by_cases
|
||
(assume H1 : b = 0, by rewrite [H1, *int.div_zero, neg_zero])
|
||
(assume H1 : b ≠ 0,
|
||
dvd.elim H
|
||
(take c, assume H' : a = b * c,
|
||
by rewrite [H', neg_mul_eq_mul_neg, *!int.mul_div_cancel_left H1]))
|
||
|
||
protected theorem sign_eq_div_abs (a : ℤ) : sign a = a / (abs a) :=
|
||
decidable.by_cases
|
||
(suppose a = 0, by subst a)
|
||
(suppose a ≠ 0,
|
||
have abs a ≠ 0, from assume H, this (eq_zero_of_abs_eq_zero H),
|
||
have abs a ∣ a, from abs_dvd_of_dvd !dvd.refl,
|
||
eq.symm (iff.mpr (!int.div_eq_iff_eq_mul_left `abs a ≠ 0` this) !eq_sign_mul_abs))
|
||
|
||
theorem le_of_dvd {a b : ℤ} (bpos : b > 0) (H : a ∣ b) : a ≤ b :=
|
||
or.elim !le_or_gt
|
||
(suppose a ≤ 0, le.trans this (le_of_lt bpos))
|
||
(suppose a > 0,
|
||
obtain c (Hc : b = a * c), from exists_eq_mul_right_of_dvd H,
|
||
have a * c > 0, by rewrite -Hc; exact bpos,
|
||
have c > 0, from pos_of_mul_pos_left this (le_of_lt `a > 0`),
|
||
show a ≤ b, from calc
|
||
a = a * 1 : mul_one
|
||
... ≤ a * c : mul_le_mul_of_nonneg_left (add_one_le_of_lt `c > 0`) (le_of_lt `a > 0`)
|
||
... = b : Hc)
|
||
|
||
/- / and ordering -/
|
||
|
||
protected theorem div_mul_le (a : ℤ) {b : ℤ} (H : b ≠ 0) : a / b * b ≤ a :=
|
||
calc
|
||
a = a / b * b + a % b : eq_div_mul_add_mod
|
||
... ≥ a / b * b : le_add_of_nonneg_right (!mod_nonneg H)
|
||
|
||
protected theorem div_le_of_le_mul {a b c : ℤ} (H : c > 0) (H' : a ≤ b * c) : a / c ≤ b :=
|
||
le_of_mul_le_mul_right (calc
|
||
a / c * c = a / c * c + 0 : add_zero
|
||
... ≤ a / c * c + a % c : add_le_add_left (!mod_nonneg (ne_of_gt H))
|
||
... = a : eq_div_mul_add_mod
|
||
... ≤ b * c : H') H
|
||
|
||
protected theorem div_le_self (a : ℤ) {b : ℤ} (H1 : a ≥ 0) (H2 : b ≥ 0) : a / b ≤ a :=
|
||
or.elim (lt_or_eq_of_le H2)
|
||
(assume H3 : b > 0,
|
||
have H4 : b ≥ 1, from add_one_le_of_lt H3,
|
||
have H5 : a ≤ a * b, from calc
|
||
a = a * 1 : mul_one
|
||
... ≤ a * b : !mul_le_mul_of_nonneg_left H4 H1,
|
||
int.div_le_of_le_mul H3 H5)
|
||
(assume H3 : 0 = b,
|
||
by rewrite [-H3, int.div_zero]; apply H1)
|
||
|
||
protected theorem mul_le_of_le_div {a b c : ℤ} (H1 : c > 0) (H2 : a ≤ b / c) : a * c ≤ b :=
|
||
calc
|
||
a * c ≤ b / c * c : !mul_le_mul_of_nonneg_right H2 (le_of_lt H1)
|
||
... ≤ b : !int.div_mul_le (ne_of_gt H1)
|
||
|
||
protected theorem le_div_of_mul_le {a b c : ℤ} (H1 : c > 0) (H2 : a * c ≤ b) : a ≤ b / c :=
|
||
have H3 : a * c < (b / c + 1) * c, from
|
||
calc
|
||
a * c ≤ b : H2
|
||
... = b / c * c + b % c : eq_div_mul_add_mod
|
||
... < b / c * c + c : add_lt_add_left (!mod_lt_of_pos H1)
|
||
... = (b / c + 1) * c : by rewrite [right_distrib, one_mul],
|
||
le_of_lt_add_one (lt_of_mul_lt_mul_right H3 (le_of_lt H1))
|
||
|
||
protected theorem le_div_iff_mul_le {a b c : ℤ} (H : c > 0) : a ≤ b / c ↔ a * c ≤ b :=
|
||
iff.intro (!int.mul_le_of_le_div H) (!int.le_div_of_mul_le H)
|
||
|
||
protected theorem div_le_div {a b c : ℤ} (H : c > 0) (H' : a ≤ b) : a / c ≤ b / c :=
|
||
int.le_div_of_mul_le H (le.trans (!int.div_mul_le (ne_of_gt H)) H')
|
||
|
||
protected theorem div_lt_of_lt_mul {a b c : ℤ} (H : c > 0) (H' : a < b * c) : a / c < b :=
|
||
lt_of_mul_lt_mul_right
|
||
(calc
|
||
a / c * c = a / c * c + 0 : add_zero
|
||
... ≤ a / c * c + a % c : add_le_add_left (!mod_nonneg (ne_of_gt H))
|
||
... = a : eq_div_mul_add_mod
|
||
... < b * c : H')
|
||
(le_of_lt H)
|
||
|
||
protected theorem lt_mul_of_div_lt {a b c : ℤ} (H1 : c > 0) (H2 : a / c < b) : a < b * c :=
|
||
assert H3 : (a / c + 1) * c ≤ b * c,
|
||
from !mul_le_mul_of_nonneg_right (add_one_le_of_lt H2) (le_of_lt H1),
|
||
have H4 : a / c * c + c ≤ b * c, by rewrite [right_distrib at H3, one_mul at H3]; apply H3,
|
||
calc
|
||
a = a / c * c + a % c : eq_div_mul_add_mod
|
||
... < a / c * c + c : add_lt_add_left (!mod_lt_of_pos H1)
|
||
... ≤ b * c : H4
|
||
|
||
protected theorem div_lt_iff_lt_mul {a b c : ℤ} (H : c > 0) : a / c < b ↔ a < b * c :=
|
||
iff.intro (!int.lt_mul_of_div_lt H) (!int.div_lt_of_lt_mul H)
|
||
|
||
protected theorem div_le_iff_le_mul_of_div {a b : ℤ} (c : ℤ) (H : b > 0) (H' : b ∣ a) :
|
||
a / b ≤ c ↔ a ≤ c * b :=
|
||
by rewrite [propext (!le_iff_mul_le_mul_right H), !int.div_mul_cancel H']
|
||
|
||
protected theorem le_mul_of_div_le_of_div {a b c : ℤ} (H1 : b > 0) (H2 : b ∣ a) (H3 : a / b ≤ c) :
|
||
a ≤ c * b :=
|
||
iff.mp (!int.div_le_iff_le_mul_of_div H1 H2) H3
|
||
|
||
theorem div_pos_of_pos_of_dvd {a b : ℤ} (H1 : a > 0) (H2 : b ≥ 0) (H3 : b ∣ a) : a / b > 0 :=
|
||
have H4 : b ≠ 0, from
|
||
(assume H5 : b = 0,
|
||
have H6 : a = 0, from eq_zero_of_zero_dvd (H5 ▸ H3),
|
||
ne_of_gt H1 H6),
|
||
have H6 : (a / b) * b > 0, by rewrite (int.div_mul_cancel H3); apply H1,
|
||
pos_of_mul_pos_right H6 H2
|
||
|
||
theorem div_eq_div_of_dvd_of_dvd {a b c d : ℤ} (H1 : b ∣ a) (H2 : d ∣ c) (H3 : b ≠ 0)
|
||
(H4 : d ≠ 0) (H5 : a * d = b * c) :
|
||
a / b = c / d :=
|
||
begin
|
||
apply int.div_eq_of_eq_mul_right H3,
|
||
rewrite [-!int.mul_div_assoc H2],
|
||
apply eq.symm,
|
||
apply int.div_eq_of_eq_mul_left H4,
|
||
apply eq.symm H5
|
||
end
|
||
|
||
end int
|