19361f0196
see discussion at #604
363 lines
13 KiB
Text
363 lines
13 KiB
Text
/-
|
||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: algebra.ring
|
||
Authors: Jeremy Avigad, Leonardo de Moura
|
||
|
||
Structures with multiplicative and additive components, including semirings, rings, and fields.
|
||
The development is modeled after Isabelle's library.
|
||
Ported from the standard library
|
||
-/
|
||
|
||
import algebra.group
|
||
|
||
open core
|
||
|
||
namespace algebra
|
||
|
||
variable {A : Type}
|
||
|
||
/- auxiliary classes -/
|
||
|
||
structure distrib [class] (A : Type) extends has_mul A, has_add A :=
|
||
(left_distrib : Πa b c, mul a (add b c) = add (mul a b) (mul a c))
|
||
(right_distrib : Πa b c, mul (add a b) c = add (mul a c) (mul b c))
|
||
|
||
definition left_distrib [s : distrib A] (a b c : A) : a * (b + c) = a * b + a * c :=
|
||
!distrib.left_distrib
|
||
|
||
definition right_distrib [s: distrib A] (a b c : A) : (a + b) * c = a * c + b * c :=
|
||
!distrib.right_distrib
|
||
|
||
structure mul_zero_class [class] (A : Type) extends has_mul A, has_zero A :=
|
||
(zero_mul : Πa, mul zero a = zero)
|
||
(mul_zero : Πa, mul a zero = zero)
|
||
|
||
definition zero_mul [s : mul_zero_class A] (a : A) : 0 * a = 0 := !mul_zero_class.zero_mul
|
||
definition mul_zero [s : mul_zero_class A] (a : A) : a * 0 = 0 := !mul_zero_class.mul_zero
|
||
|
||
structure zero_ne_one_class [class] (A : Type) extends has_zero A, has_one A :=
|
||
(zero_ne_one : zero ≠ one)
|
||
|
||
definition zero_ne_one [s: zero_ne_one_class A] : 0 ≠ 1 := @zero_ne_one_class.zero_ne_one A s
|
||
|
||
/- semiring -/
|
||
|
||
structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A,
|
||
mul_zero_class A
|
||
|
||
section semiring
|
||
variables [s : semiring A] (a b c : A)
|
||
include s
|
||
|
||
definition ne_zero_of_mul_ne_zero_right {a b : A} (H : a * b ≠ 0) : a ≠ 0 :=
|
||
assume H1 : a = 0,
|
||
have H2 : a * b = 0, from H1⁻¹ ▸ zero_mul b,
|
||
H H2
|
||
|
||
definition ne_zero_of_mul_ne_zero_left {a b : A} (H : a * b ≠ 0) : b ≠ 0 :=
|
||
assume H1 : b = 0,
|
||
have H2 : a * b = 0, from H1⁻¹ ▸ mul_zero a,
|
||
H H2
|
||
end semiring
|
||
|
||
/- comm semiring -/
|
||
|
||
structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
|
||
-- TODO: we could also define a cancelative comm_semiring, i.e. satisfying
|
||
-- c ≠ 0 → c * a = c * b → a = b.
|
||
|
||
section comm_semiring
|
||
variables [s : comm_semiring A] (a b c : A)
|
||
include s
|
||
|
||
definition dvd (a b : A) : Type := Σc, b = a * c
|
||
notation a ∣ b := dvd a b
|
||
|
||
definition dvd.intro {a b c : A} (H : a * c = b) : a ∣ b :=
|
||
sigma.mk _ H⁻¹
|
||
|
||
definition dvd.intro_left {a b c : A} (H : c * a = b) : a ∣ b :=
|
||
dvd.intro (!mul.comm ▸ H)
|
||
|
||
definition exists_eq_mul_right_of_dvd {a b : A} (H : a ∣ b) : Σc, b = a * c := H
|
||
|
||
definition dvd.elim {P : Type} {a b : A} (H₁ : a ∣ b) (H₂ : Πc, b = a * c → P) : P :=
|
||
sigma.rec_on H₁ H₂
|
||
|
||
definition exists_eq_mul_left_of_dvd {a b : A} (H : a ∣ b) : Σc, b = c * a :=
|
||
dvd.elim H (take c, assume H1 : b = a * c, sigma.mk c (H1 ⬝ !mul.comm))
|
||
|
||
definition dvd.elim_left {P : Type} {a b : A} (H₁ : a ∣ b) (H₂ : Πc, b = c * a → P) : P :=
|
||
sigma.rec_on (exists_eq_mul_left_of_dvd H₁) (take c, assume H₃ : b = c * a, H₂ c H₃)
|
||
|
||
definition dvd.refl : a ∣ a := dvd.intro !mul_one
|
||
|
||
definition dvd.trans {a b c : A} (H₁ : a ∣ b) (H₂ : b ∣ c) : a ∣ c :=
|
||
dvd.elim H₁
|
||
(take d, assume H₃ : b = a * d,
|
||
dvd.elim H₂
|
||
(take e, assume H₄ : c = b * e,
|
||
dvd.intro
|
||
(show a * (d * e) = c, by rewrite [-mul.assoc, -H₃, H₄])))
|
||
|
||
definition eq_zero_of_zero_dvd {a : A} (H : 0 ∣ a) : a = 0 :=
|
||
dvd.elim H (take c, assume H' : a = 0 * c, H' ⬝ !zero_mul)
|
||
|
||
definition dvd_zero : a ∣ 0 := dvd.intro !mul_zero
|
||
|
||
definition one_dvd : 1 ∣ a := dvd.intro !one_mul
|
||
|
||
definition dvd_mul_right : a ∣ a * b := dvd.intro rfl
|
||
|
||
definition dvd_mul_left : a ∣ b * a := mul.comm a b ▸ dvd_mul_right a b
|
||
|
||
definition dvd_mul_of_dvd_left {a b : A} (H : a ∣ b) (c : A) : a ∣ b * c :=
|
||
dvd.elim H
|
||
(take d,
|
||
assume H₁ : b = a * d,
|
||
dvd.intro
|
||
(show a * (d * c) = b * c, from by rewrite [-mul.assoc, H₁]))
|
||
|
||
definition dvd_mul_of_dvd_right {a b : A} (H : a ∣ b) (c : A) : a ∣ c * b :=
|
||
!mul.comm ▸ (dvd_mul_of_dvd_left H _)
|
||
|
||
definition mul_dvd_mul {a b c d : A} (dvd_ab : (a ∣ b)) (dvd_cd : c ∣ d) : a * c ∣ b * d :=
|
||
dvd.elim dvd_ab
|
||
(take e, assume Haeb : b = a * e,
|
||
dvd.elim dvd_cd
|
||
(take f, assume Hcfd : d = c * f,
|
||
dvd.intro
|
||
(show a * c * (e * f) = b * d,
|
||
by rewrite [mul.assoc, {c*_}mul.left_comm, -mul.assoc, Haeb, Hcfd])))
|
||
|
||
definition dvd_of_mul_right_dvd {a b c : A} (H : a * b ∣ c) : a ∣ c :=
|
||
dvd.elim H (take d, assume Habdc : c = a * b * d, dvd.intro (!mul.assoc⁻¹ ⬝ Habdc⁻¹))
|
||
|
||
definition dvd_of_mul_left_dvd {a b c : A} (H : a * b ∣ c) : b ∣ c :=
|
||
dvd_of_mul_right_dvd (mul.comm a b ▸ H)
|
||
|
||
definition dvd_add {a b c : A} (Hab : a ∣ b) (Hac : a ∣ c) : a ∣ b + c :=
|
||
dvd.elim Hab
|
||
(take d, assume Hadb : b = a * d,
|
||
dvd.elim Hac
|
||
(take e, assume Haec : c = a * e,
|
||
dvd.intro (show a * (d + e) = b + c,
|
||
by rewrite [left_distrib, -Hadb, -Haec])))
|
||
end comm_semiring
|
||
|
||
/- ring -/
|
||
|
||
structure ring [class] (A : Type) extends add_comm_group A, monoid A, distrib A
|
||
|
||
definition ring.mul_zero [s : ring A] (a : A) : a * 0 = 0 :=
|
||
have H : a * 0 + 0 = a * 0 + a * 0, from calc
|
||
a * 0 + 0 = a * 0 : by rewrite add_zero
|
||
... = a * (0 + 0) : by rewrite add_zero
|
||
... = a * 0 + a * 0 : by rewrite {a*_}ring.left_distrib,
|
||
show a * 0 = 0, from (add.left_cancel H)⁻¹
|
||
|
||
definition ring.zero_mul [s : ring A] (a : A) : 0 * a = 0 :=
|
||
have H : 0 * a + 0 = 0 * a + 0 * a, from calc
|
||
0 * a + 0 = 0 * a : by rewrite add_zero
|
||
... = (0 + 0) * a : by rewrite add_zero
|
||
... = 0 * a + 0 * a : by rewrite {_*a}ring.right_distrib,
|
||
show 0 * a = 0, from (add.left_cancel H)⁻¹
|
||
|
||
definition ring.to_semiring [instance] [coercion] [reducible] [s : ring A] : semiring A :=
|
||
⦃ semiring, s,
|
||
mul_zero := ring.mul_zero,
|
||
zero_mul := ring.zero_mul ⦄
|
||
|
||
section
|
||
variables [s : ring A] (a b c d e : A)
|
||
include s
|
||
|
||
definition neg_mul_eq_neg_mul : -(a * b) = -a * b :=
|
||
neg_eq_of_add_eq_zero
|
||
begin
|
||
rewrite [-right_distrib, add.right_inv, zero_mul]
|
||
end
|
||
|
||
definition neg_mul_eq_mul_neg : -(a * b) = a * -b :=
|
||
neg_eq_of_add_eq_zero
|
||
begin
|
||
rewrite [-left_distrib, add.right_inv, mul_zero]
|
||
end
|
||
|
||
definition neg_mul_neg : -a * -b = a * b :=
|
||
calc
|
||
-a * -b = -(a * -b) : by rewrite -neg_mul_eq_neg_mul
|
||
... = - -(a * b) : by rewrite -neg_mul_eq_mul_neg
|
||
... = a * b : by rewrite neg_neg
|
||
|
||
definition neg_mul_comm : -a * b = a * -b := !neg_mul_eq_neg_mul⁻¹ ⬝ !neg_mul_eq_mul_neg
|
||
|
||
definition neg_eq_neg_one_mul : -a = -1 * a :=
|
||
calc
|
||
-a = -(1 * a) : by rewrite one_mul
|
||
... = -1 * a : by rewrite neg_mul_eq_neg_mul
|
||
|
||
definition mul_sub_left_distrib : a * (b - c) = a * b - a * c :=
|
||
calc
|
||
a * (b - c) = a * b + a * -c : left_distrib
|
||
... = a * b + - (a * c) : by rewrite -neg_mul_eq_mul_neg
|
||
... = a * b - a * c : rfl
|
||
|
||
definition mul_sub_right_distrib : (a - b) * c = a * c - b * c :=
|
||
calc
|
||
(a - b) * c = a * c + -b * c : right_distrib
|
||
... = a * c + - (b * c) : by rewrite neg_mul_eq_neg_mul
|
||
... = a * c - b * c : rfl
|
||
|
||
-- TODO: can calc mode be improved to make this easier?
|
||
-- TODO: there is also the other direction. It will be easier when we
|
||
-- have the simplifier.
|
||
|
||
definition mul_add_eq_mul_add_iff_sub_mul_add_eq : a * e + c = b * e + d ↔ (a - b) * e + c = d :=
|
||
calc
|
||
a * e + c = b * e + d ↔ a * e + c = d + b * e : by rewrite {b*e+_}add.comm
|
||
... ↔ a * e + c - b * e = d : iff.symm !sub_eq_iff_eq_add
|
||
... ↔ a * e - b * e + c = d : by rewrite sub_add_eq_add_sub
|
||
... ↔ (a - b) * e + c = d : by rewrite mul_sub_right_distrib
|
||
|
||
definition mul_neg_one_eq_neg : a * (-1) = -a :=
|
||
have H : a + a * -1 = 0, from calc
|
||
a + a * -1 = a * 1 + a * -1 : mul_one
|
||
... = a * (1 + -1) : left_distrib
|
||
... = a * 0 : add.right_inv
|
||
... = 0 : mul_zero,
|
||
inverse (neg_eq_of_add_eq_zero H)
|
||
|
||
definition mul_ne_zero_imp_ne_zero {a b : A} (H : a * b ≠ 0) : a ≠ 0 × b ≠ 0 :=
|
||
have Ha : a ≠ 0, from
|
||
(assume Ha1 : a = 0,
|
||
have H1 : a * b = 0, by rewrite [Ha1, zero_mul],
|
||
absurd H1 H),
|
||
have Hb : b ≠ 0, from
|
||
(assume Hb1 : b = 0,
|
||
have H1 : a * b = 0, by rewrite [Hb1, mul_zero],
|
||
absurd H1 H),
|
||
pair Ha Hb
|
||
end
|
||
|
||
structure comm_ring [class] (A : Type) extends ring A, comm_semigroup A
|
||
|
||
definition comm_ring.to_comm_semiring [instance] [coercion] [reducible] [s : comm_ring A] : comm_semiring A :=
|
||
⦃ comm_semiring, s,
|
||
mul_zero := mul_zero,
|
||
zero_mul := zero_mul ⦄
|
||
|
||
section
|
||
variables [s : comm_ring A] (a b c d e : A)
|
||
include s
|
||
|
||
definition mul_self_sub_mul_self_eq : a * a - b * b = (a + b) * (a - b) :=
|
||
by rewrite [left_distrib, *right_distrib, add.assoc, -{b*a + _}add.assoc,
|
||
-*neg_mul_eq_mul_neg, {a*b}mul.comm, add.right_inv, zero_add]
|
||
|
||
definition mul_self_sub_one_eq : a * a - 1 = (a + 1) * (a - 1) :=
|
||
mul_one 1 ▸ mul_self_sub_mul_self_eq a 1
|
||
|
||
definition dvd_neg_iff_dvd : (a ∣ -b) ↔ (a ∣ b) :=
|
||
iff.intro
|
||
(assume H : (a ∣ -b),
|
||
dvd.elim H
|
||
(take c, assume H' : -b = a * c,
|
||
dvd.intro
|
||
(show a * -c = b,
|
||
by rewrite [-neg_mul_eq_mul_neg, -H', neg_neg])))
|
||
(assume H : (a ∣ b),
|
||
dvd.elim H
|
||
(take c, assume H' : b = a * c,
|
||
dvd.intro
|
||
(show a * -c = -b,
|
||
by rewrite [-neg_mul_eq_mul_neg, -H'])))
|
||
|
||
definition neg_dvd_iff_dvd : (-a ∣ b) ↔ (a ∣ b) :=
|
||
iff.intro
|
||
(assume H : (-a ∣ b),
|
||
dvd.elim H
|
||
(take c, assume H' : b = -a * c,
|
||
dvd.intro
|
||
(show a * -c = b, by rewrite [-neg_mul_comm, H'])))
|
||
(assume H : (a ∣ b),
|
||
dvd.elim H
|
||
(take c, assume H' : b = a * c,
|
||
dvd.intro
|
||
(show -a * -c = b, by rewrite [neg_mul_neg, H'])))
|
||
|
||
definition dvd_sub (H₁ : (a ∣ b)) (H₂ : (a ∣ c)) : (a ∣ b - c) :=
|
||
dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂)
|
||
end
|
||
|
||
/- integral domains -/
|
||
|
||
structure no_zero_divisors [class] (A : Type) extends has_mul A, has_zero A :=
|
||
(eq_zero_or_eq_zero_of_mul_eq_zero : Πa b, mul a b = zero → a = zero ⊎ b = zero)
|
||
|
||
definition eq_zero_or_eq_zero_of_mul_eq_zero {A : Type} [s : no_zero_divisors A] {a b : A}
|
||
(H : a * b = 0) :
|
||
a = 0 ⊎ b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H
|
||
|
||
structure integral_domain [class] (A : Type) extends comm_ring A, no_zero_divisors A
|
||
|
||
section
|
||
variables [s : integral_domain A] (a b c d e : A)
|
||
include s
|
||
|
||
definition mul_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
|
||
assume H : a * b = 0,
|
||
sum.rec_on (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4)
|
||
|
||
definition mul.cancel_right {a b c : A} (Ha : a ≠ 0) (H : b * a = c * a) : b = c :=
|
||
have H1 : b * a - c * a = 0, from iff.mp !eq_iff_sub_eq_zero H,
|
||
have H2 : (b - c) * a = 0, using H1, by rewrite [mul_sub_right_distrib, H1],
|
||
have H3 : b - c = 0, from sum_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
|
||
iff.elim_right !eq_iff_sub_eq_zero H3
|
||
|
||
definition mul.cancel_left {a b c : A} (Ha : a ≠ 0) (H : a * b = a * c) : b = c :=
|
||
have H1 : a * b - a * c = 0, from iff.mp !eq_iff_sub_eq_zero H,
|
||
have H2 : a * (b - c) = 0, using H1, by rewrite [mul_sub_left_distrib, H1],
|
||
have H3 : b - c = 0, from sum_resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
|
||
iff.elim_right !eq_iff_sub_eq_zero H3
|
||
|
||
-- TODO: do we want the iff versions?
|
||
|
||
definition mul_self_eq_mul_self_iff (a b : A) : a * a = b * b ↔ a = b ⊎ a = -b :=
|
||
iff.intro
|
||
(λ H : a * a = b * b,
|
||
have aux₁ : (a - b) * (a + b) = 0,
|
||
by rewrite [mul.comm, -mul_self_sub_mul_self_eq, H, sub_self],
|
||
assert aux₂ : a - b = 0 ⊎ a + b = 0, from !eq_zero_or_eq_zero_of_mul_eq_zero aux₁,
|
||
sum.rec_on aux₂
|
||
(λ H : a - b = 0, sum.inl (eq_of_sub_eq_zero H))
|
||
(λ H : a + b = 0, sum.inr (eq_neg_of_add_eq_zero H)))
|
||
(λ H : a = b ⊎ a = -b, sum.rec_on H
|
||
(λ a_eq_b, by rewrite a_eq_b)
|
||
(λ a_eq_mb, by rewrite [a_eq_mb, neg_mul_neg]))
|
||
|
||
definition mul_self_eq_one_iff (a : A) : a * a = 1 ↔ a = 1 ⊎ a = -1 :=
|
||
assert aux : a * a = 1 * 1 ↔ a = 1 ⊎ a = -1, from mul_self_eq_mul_self_iff a 1,
|
||
by rewrite mul_one at aux; exact aux
|
||
|
||
-- TODO: c - b * c → c = 0 ⊎ b = 1 and variants
|
||
|
||
definition dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : (a * b ∣ a * c)) : (b ∣ c) :=
|
||
dvd.elim Hdvd
|
||
(take d,
|
||
assume H : a * c = a * b * d,
|
||
have H1 : b * d = c, from mul.cancel_left Ha (mul.assoc a b d ▸ H⁻¹),
|
||
dvd.intro H1)
|
||
|
||
definition dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : (b * a ∣ c * a)) : (b ∣ c) :=
|
||
dvd.elim Hdvd
|
||
(take d,
|
||
assume H : c * a = b * a * d,
|
||
have H1 : b * d * a = c * a, from by rewrite [mul.right_comm, -H],
|
||
have H2 : b * d = c, from mul.cancel_right Ha H1,
|
||
dvd.intro H2)
|
||
end
|
||
|
||
end algebra
|