142 lines
5.1 KiB
Text
142 lines
5.1 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
Some finite categories which are neither discrete nor indiscrete
|
|
-/
|
|
|
|
import ..functor.basic types.sum
|
|
|
|
open bool unit is_trunc sum eq functor equiv
|
|
|
|
namespace category
|
|
|
|
variables {A : Type} (R : A → A → Type) (H : Π⦃a b c⦄, R a b → R b c → empty)
|
|
[HR : Πa b, is_set (R a b)] [HA : is_trunc 1 A]
|
|
|
|
include H HR HA
|
|
|
|
-- we call a category sparse if you cannot compose two morphism, except the ones which come from equality
|
|
definition sparse_category' [constructor] : precategory A :=
|
|
precategory.mk
|
|
(λa b, R a b ⊎ a = b)
|
|
begin
|
|
intros a b c g f, induction g with rg pg: induction f with rf pf,
|
|
{ exfalso, exact H rf rg},
|
|
{ exact inl (pf⁻¹ ▸ rg)},
|
|
{ exact inl (pg ▸ rf)},
|
|
{ exact inr (pf ⬝ pg)},
|
|
end
|
|
(λa, inr idp)
|
|
abstract begin
|
|
intros a b c d h g f, induction h with rh ph: induction g with rg pg: induction f with rf pf:
|
|
esimp: try induction pf; try induction pg; try induction ph: esimp;
|
|
try (exfalso; apply H;assumption;assumption)
|
|
end end
|
|
abstract by intros a b f; induction f with rf pf: reflexivity end
|
|
abstract by intros a b f; (induction f with rf pf: esimp); rewrite idp_con end
|
|
|
|
definition sparse_category [constructor] : Precategory :=
|
|
precategory.Mk (sparse_category' R @H)
|
|
|
|
definition sparse_category_functor [constructor] (C : Precategory) (f : A → C)
|
|
(g : Π{a b} (r : R a b), f a ⟶ f b) : sparse_category R H ⇒ C :=
|
|
functor.mk f
|
|
(λa b, sum.rec g (eq.rec id))
|
|
(λa, idp)
|
|
abstract begin
|
|
intro a b c g f, induction g with rg pg: induction f with rf pf: esimp:
|
|
try induction pg: try induction pf: esimp,
|
|
exfalso, exact H rf rg,
|
|
exact !id_right⁻¹,
|
|
exact !id_left⁻¹,
|
|
exact !id_id⁻¹
|
|
end end
|
|
|
|
omit H HR HA
|
|
|
|
section equalizer
|
|
inductive equalizer_category_hom : bool → bool → Type :=
|
|
| f1 : equalizer_category_hom ff tt
|
|
| f2 : equalizer_category_hom ff tt
|
|
|
|
open equalizer_category_hom
|
|
theorem is_set_equalizer_category_hom (b₁ b₂ : bool) : is_set (equalizer_category_hom b₁ b₂) :=
|
|
begin
|
|
have H : Πb b', equalizer_category_hom b b' ≃ bool.rec (bool.rec empty bool) (λb, empty) b b',
|
|
begin
|
|
intro b b', fapply equiv.MK,
|
|
{ intro x, induction x, exact ff, exact tt},
|
|
{ intro v, induction b: induction b': induction v, exact f1, exact f2},
|
|
{ intro v, induction b: induction b': induction v: reflexivity},
|
|
{ intro x, induction x: reflexivity}
|
|
end,
|
|
apply is_trunc_equiv_closed_rev, apply H,
|
|
induction b₁: induction b₂: exact _
|
|
end
|
|
|
|
local attribute is_set_equalizer_category_hom [instance]
|
|
definition equalizer_category [constructor] : Precategory :=
|
|
sparse_category
|
|
equalizer_category_hom
|
|
begin intro a b c g f; cases g: cases f end
|
|
|
|
definition equalizer_category_functor [constructor] (C : Precategory) {x y : C} (f g : x ⟶ y)
|
|
: equalizer_category ⇒ C :=
|
|
sparse_category_functor _ _ C
|
|
(bool.rec x y)
|
|
begin intro a b h; induction h, exact f, exact g end
|
|
end equalizer
|
|
|
|
section pullback
|
|
inductive pullback_category_ob : Type :=
|
|
| TR : pullback_category_ob
|
|
| BL : pullback_category_ob
|
|
| BR : pullback_category_ob
|
|
|
|
theorem pullback_category_ob_decidable_equality : decidable_eq pullback_category_ob :=
|
|
begin
|
|
intro x y; induction x: induction y:
|
|
try exact decidable.inl idp:
|
|
apply decidable.inr; contradiction
|
|
end
|
|
|
|
open pullback_category_ob
|
|
inductive pullback_category_hom : pullback_category_ob → pullback_category_ob → Type :=
|
|
| f1 : pullback_category_hom TR BR
|
|
| f2 : pullback_category_hom BL BR
|
|
|
|
open pullback_category_hom
|
|
theorem is_set_pullback_category_hom (b₁ b₂ : pullback_category_ob)
|
|
: is_set (pullback_category_hom b₁ b₂) :=
|
|
begin
|
|
have H : Πb b', pullback_category_hom b b' ≃
|
|
pullback_category_ob.rec (λb, empty) (λb, empty)
|
|
(pullback_category_ob.rec unit unit empty) b' b,
|
|
begin
|
|
intro b b', fapply equiv.MK,
|
|
{ intro x, induction x: exact star},
|
|
{ intro v, induction b: induction b': induction v, exact f1, exact f2},
|
|
{ intro v, induction b: induction b': induction v: reflexivity},
|
|
{ intro x, induction x: reflexivity}
|
|
end,
|
|
apply is_trunc_equiv_closed_rev, apply H,
|
|
induction b₁: induction b₂: exact _
|
|
end
|
|
|
|
local attribute is_set_pullback_category_hom pullback_category_ob_decidable_equality [instance]
|
|
definition pullback_category [constructor] : Precategory :=
|
|
sparse_category
|
|
pullback_category_hom
|
|
begin intro a b c g f; cases g: cases f end
|
|
|
|
definition pullback_category_functor [constructor] (C : Precategory) {x y z : C}
|
|
(f : x ⟶ z) (g : y ⟶ z) : pullback_category ⇒ C :=
|
|
sparse_category_functor _ _ C
|
|
(pullback_category_ob.rec x y z)
|
|
begin intro a b h; induction h, exact f, exact g end
|
|
end pullback
|
|
|
|
end category
|