lean2/tests/lean/run/tree.lean
2014-10-13 07:08:29 -07:00

72 lines
2.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import logic data.prod
open eq.ops prod
inductive tree (A : Type) :=
leaf : A → tree A,
node : tree A → tree A → tree A
inductive one.{l} : Type.{max 1 l} :=
star : one
set_option pp.universes true
namespace tree
section
variables {A : Type} {C : tree A → Type}
definition cases_on (t : tree A) (e₁ : Πa, C (leaf a)) (e₂ : Πt₁ t₂, C (node t₁ t₂)) : C t :=
rec e₁ (λt₁ t₂ r₁ r₂, e₂ t₁ t₂) t
definition rec_on (t : tree A) (e₁ : Πa, C (leaf a)) (e₂ : Πt₁ t₂ r₁ r₂, C (node t₁ t₂)) : C t :=
rec e₁ e₂ t
end
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable (C : tree A → Type.{l₂})
definition below (t : tree A) : Type :=
rec_on t (λ a, one.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
end
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable {C : tree A → Type.{l₂}}
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
:= have general : C t × below C t, from
rec_on t
(λa, (H (leaf a) one.star, one.star))
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
have b : below C (node l r), from
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),
have c : C (node l r), from
H (node l r) b,
(c, b)),
pr₁ general
end
definition no_confusion_type {A : Type} (P : Type) (t₁ t₂ : tree A) : Type :=
cases_on t₁
(λ a₁, cases_on t₂
(λ a₂, (a₁ = a₂ → P) → P)
(λ l₂ r₂, P))
(λ l₁ r₁, cases_on t₂
(λ a₂, P)
(λ l₂ r₂, (l₁ = l₂ → r₁ = r₂ → P) → P))
set_option pp.universes true
check no_confusion_type
definition no_confusion {A : Type} (P : Type) (t₁ t₂ : tree A) : t₁ = t₂ → no_confusion_type P t₁ t₂ :=
assume e₁ : t₁ = t₂,
have aux₁ : t₁ = t₁ → no_confusion_type P t₁ t₁, from
take h, cases_on t₁
(λ a, assume h : a = a → P, h (eq.refl a))
(λ l r, assume h : l = l → r = r → P, h (eq.refl l) (eq.refl r)),
eq.rec aux₁ e₁ e₁
check no_confusion
theorem leaf_ne_tree {A : Type} (a : A) (l r : tree A) : leaf a ≠ node l r :=
assume h : leaf a = node l r,
no_confusion false (leaf a) (node l r) h
end tree