ddef24223b
All HITs which automatically have a point are pointed without a 'p' in front. HITs which do not automatically have a point do still have a p (e.g. pushout/ppushout). There were a lot of annoyances with spheres being indexed by N_{-1} with almost no extra generality. We now index the spheres by nat, making sphere 0 = pbool.
378 lines
13 KiB
Text
378 lines
13 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Declaration of the circle
|
||
-/
|
||
|
||
import .sphere
|
||
import types.int.hott
|
||
import algebra.homotopy_group .connectedness
|
||
|
||
open eq susp bool is_equiv equiv is_trunc is_conn pi algebra pointed
|
||
|
||
definition circle : Type₀ := sphere 1
|
||
|
||
namespace circle
|
||
notation `S¹` := circle
|
||
definition base1 : S¹ := !north
|
||
definition base2 : S¹ := !south
|
||
definition seg1 : base1 = base2 := merid ff
|
||
definition seg2 : base1 = base2 := merid tt
|
||
|
||
definition base : S¹ := base1
|
||
definition loop : base = base := seg2 ⬝ seg1⁻¹
|
||
|
||
definition rec2 {P : S¹ → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) (x : S¹) : P x :=
|
||
begin
|
||
induction x with b,
|
||
{ exact Pb1 },
|
||
{ exact Pb2 },
|
||
{ esimp at *, induction b with y,
|
||
{ exact Ps1 },
|
||
{ exact Ps2 }},
|
||
end
|
||
|
||
definition rec2_on [reducible] {P : S¹ → Type} (x : S¹) (Pb1 : P base1) (Pb2 : P base2)
|
||
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : P x :=
|
||
circle.rec2 Pb1 Pb2 Ps1 Ps2 x
|
||
|
||
theorem rec2_seg1 {P : S¹ → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2)
|
||
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
|
||
!rec_merid
|
||
|
||
theorem rec2_seg2 {P : S¹ → Type} (Pb1 : P base1) (Pb2 : P base2)
|
||
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2)
|
||
: apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
||
!rec_merid
|
||
|
||
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : S¹) : P :=
|
||
rec2 Pb1 Pb2 (pathover_of_eq _ Ps1) (pathover_of_eq _ Ps2) x
|
||
|
||
definition elim2_on [reducible] {P : Type} (x : S¹) (Pb1 Pb2 : P)
|
||
(Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P :=
|
||
elim2 Pb1 Pb2 Ps1 Ps2 x
|
||
|
||
theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
|
||
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
|
||
begin
|
||
apply eq_of_fn_eq_fn_inv !(pathover_constant seg1),
|
||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim2,rec2_seg1],
|
||
end
|
||
|
||
theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
|
||
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
||
begin
|
||
apply eq_of_fn_eq_fn_inv !(pathover_constant seg2),
|
||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim2,rec2_seg2],
|
||
end
|
||
|
||
definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : S¹) : Type :=
|
||
elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x
|
||
|
||
definition elim2_type_on [reducible] (x : S¹) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||
: Type :=
|
||
elim2_type Pb1 Pb2 Ps1 Ps2 x
|
||
|
||
theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
|
||
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn
|
||
|
||
theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
|
||
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
|
||
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn
|
||
|
||
protected definition rec {P : S¹ → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase)
|
||
(x : S¹) : P x :=
|
||
begin
|
||
fapply (rec2_on x),
|
||
{ exact Pbase},
|
||
{ exact (transport P seg1 Pbase)},
|
||
{ apply pathover_tr},
|
||
{ apply pathover_tr_of_pathover, exact Ploop}
|
||
end
|
||
|
||
protected definition rec_on [reducible] {P : S¹ → Type} (x : S¹) (Pbase : P base)
|
||
(Ploop : Pbase =[loop] Pbase) : P x :=
|
||
circle.rec Pbase Ploop x
|
||
|
||
theorem rec_loop_helper {A : Type} (P : A → Type)
|
||
{x y z : A} {p : x = y} {p' : z = y} {u : P x} {v : P z} (q : u =[p ⬝ p'⁻¹] v) :
|
||
pathover_tr_of_pathover q ⬝o !pathover_tr⁻¹ᵒ = q :=
|
||
by cases p'; cases q; exact idp
|
||
|
||
definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p :=
|
||
eq.rec_on p idp
|
||
|
||
theorem rec_loop {P : S¹ → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase) :
|
||
apd (circle.rec Pbase Ploop) loop = Ploop :=
|
||
begin
|
||
rewrite [↑loop,apd_con,↑circle.rec,↑circle.rec2_on,↑base,rec2_seg2,apd_inv,rec2_seg1],
|
||
apply rec_loop_helper
|
||
end
|
||
|
||
protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
|
||
(x : S¹) : P :=
|
||
circle.rec Pbase (pathover_of_eq _ Ploop) x
|
||
|
||
protected definition elim_on [reducible] {P : Type} (x : S¹) (Pbase : P)
|
||
(Ploop : Pbase = Pbase) : P :=
|
||
circle.elim Pbase Ploop x
|
||
|
||
theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
|
||
ap (circle.elim Pbase Ploop) loop = Ploop :=
|
||
begin
|
||
apply eq_of_fn_eq_fn_inv !(pathover_constant loop),
|
||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,rec_loop],
|
||
end
|
||
|
||
theorem elim_seg1 {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
|
||
: ap (circle.elim Pbase Ploop) seg1 = (tr_constant seg1 Pbase)⁻¹ :=
|
||
begin
|
||
apply eq_of_fn_eq_fn_inv !(pathover_constant seg1),
|
||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,↑circle.rec],
|
||
rewrite [↑circle.rec2_on,rec2_seg1], apply inverse,
|
||
apply pathover_of_eq_tr_constant_inv
|
||
end
|
||
|
||
theorem elim_seg2 {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
|
||
: ap (circle.elim Pbase Ploop) seg2 = Ploop ⬝ (tr_constant seg1 Pbase)⁻¹ :=
|
||
begin
|
||
apply eq_of_fn_eq_fn_inv !(pathover_constant seg2),
|
||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑circle.elim,↑circle.rec],
|
||
rewrite [↑circle.rec2_on,rec2_seg2],
|
||
assert l : Π(A B : Type)(a a₂ a₂' : A)(b b' : B)(p : a = a₂)(p' : a₂' = a₂)
|
||
(q : b = b'),
|
||
pathover_tr_of_pathover (pathover_of_eq _ q)
|
||
= pathover_of_eq _ (q ⬝ (tr_constant p' b')⁻¹)
|
||
:> b =[p] p' ▸ b',
|
||
{ intros, cases q, cases p', cases p, reflexivity },
|
||
apply l
|
||
end
|
||
|
||
protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase)
|
||
(x : S¹) : Type :=
|
||
circle.elim Pbase (ua Ploop) x
|
||
|
||
protected definition elim_type_on [reducible] (x : S¹) (Pbase : Type)
|
||
(Ploop : Pbase ≃ Pbase) : Type :=
|
||
circle.elim_type Pbase Ploop x
|
||
|
||
theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
|
||
transport (circle.elim_type Pbase Ploop) loop = Ploop :=
|
||
by rewrite [tr_eq_cast_ap_fn,↑circle.elim_type,elim_loop];apply cast_ua_fn
|
||
|
||
theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
|
||
transport (circle.elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
|
||
by rewrite [tr_inv_fn]; apply inv_eq_inv; apply elim_type_loop
|
||
end circle
|
||
|
||
attribute circle.base1 circle.base2 circle.base [constructor]
|
||
attribute circle.rec2 circle.elim2 [unfold 6] [recursor 6]
|
||
attribute circle.elim2_type [unfold 5]
|
||
attribute circle.rec2_on circle.elim2_on [unfold 2]
|
||
attribute circle.elim2_type [unfold 1]
|
||
attribute circle.rec circle.elim [unfold 4] [recursor 4]
|
||
attribute circle.elim_type [unfold 3]
|
||
attribute circle.rec_on circle.elim_on [unfold 2]
|
||
attribute circle.elim_type_on [unfold 1]
|
||
|
||
namespace circle
|
||
open sigma
|
||
/- universal property of the circle -/
|
||
definition circle_pi_equiv [constructor] (P : S¹ → Type)
|
||
: (Π(x : S¹), P x) ≃ Σ(p : P base), p =[loop] p :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, exact ⟨f base, apd f loop⟩},
|
||
{ intro v x, induction v with p q, induction x,
|
||
{ exact p},
|
||
{ exact q}},
|
||
{ intro v, induction v with p q, fapply sigma_eq,
|
||
{ reflexivity},
|
||
{ esimp, apply pathover_idp_of_eq, apply rec_loop}},
|
||
{ intro f, apply eq_of_homotopy, intro x, induction x,
|
||
{ reflexivity},
|
||
{ apply eq_pathover_dep, apply hdeg_squareover, esimp, apply rec_loop}}
|
||
end
|
||
|
||
definition circle_arrow_equiv [constructor] (P : Type)
|
||
: (S¹ → P) ≃ Σ(p : P), p = p :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, exact ⟨f base, ap f loop⟩},
|
||
{ intro v x, induction v with p q, induction x,
|
||
{ exact p},
|
||
{ exact q}},
|
||
{ intro v, induction v with p q, fapply sigma_eq,
|
||
{ reflexivity},
|
||
{ esimp, apply pathover_idp_of_eq, apply elim_loop}},
|
||
{ intro f, apply eq_of_homotopy, intro x, induction x,
|
||
{ reflexivity},
|
||
{ apply eq_pathover, apply hdeg_square, esimp, apply elim_loop}}
|
||
end
|
||
|
||
definition pointed_circle [instance] [constructor] : pointed S¹ :=
|
||
pointed.mk base
|
||
|
||
definition pcircle [constructor] : Type* := pointed.mk' S¹
|
||
notation `S¹*` := pcircle
|
||
|
||
definition loop_neq_idp : loop ≠ idp :=
|
||
assume H : loop = idp,
|
||
have H2 : Π{A : Type₁} {a : A} {p : a = a}, p = idp,
|
||
from λA a p, calc
|
||
p = ap (circle.elim a p) loop : elim_loop
|
||
... = ap (circle.elim a p) (refl base) : by rewrite H,
|
||
eq_bnot_ne_idp H2
|
||
|
||
definition circle_turn [reducible] (x : S¹) : x = x :=
|
||
begin
|
||
induction x,
|
||
{ exact loop },
|
||
{ apply eq_pathover, apply square_of_eq, rewrite ap_id }
|
||
end
|
||
|
||
definition turn_neq_idp : circle_turn ≠ (λx, idp) :=
|
||
assume H : circle_turn = λx, idp,
|
||
have H2 : loop = idp, from apd10 H base,
|
||
absurd H2 loop_neq_idp
|
||
|
||
open int
|
||
|
||
protected definition code [unfold 1] (x : S¹) : Type₀ :=
|
||
circle.elim_type_on x ℤ equiv_succ
|
||
|
||
definition transport_code_loop (a : ℤ) : transport circle.code loop a = succ a :=
|
||
ap10 !elim_type_loop a
|
||
|
||
definition transport_code_loop_inv (a : ℤ) : transport circle.code loop⁻¹ a = pred a :=
|
||
ap10 !elim_type_loop_inv a
|
||
|
||
protected definition encode [unfold 2] {x : S¹} (p : base = x) : circle.code x :=
|
||
transport circle.code p (0 : ℤ)
|
||
|
||
protected definition decode [unfold 1] {x : S¹} : circle.code x → base = x :=
|
||
begin
|
||
induction x,
|
||
{ exact power loop},
|
||
{ apply arrow_pathover_left, intro b, apply eq_pathover_constant_left_id_right,
|
||
apply square_of_eq, rewrite [idp_con, power_con,transport_code_loop]}
|
||
end
|
||
|
||
definition circle_eq_equiv [constructor] (x : S¹) : (base = x) ≃ circle.code x :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact circle.encode},
|
||
{ exact circle.decode},
|
||
{ exact abstract [irreducible] begin
|
||
induction x,
|
||
{ intro a, esimp, apply rec_nat_on a,
|
||
{ exact idp},
|
||
{ intros n p, rewrite [↑circle.encode, -power_con, con_tr, transport_code_loop],
|
||
exact ap succ p},
|
||
{ intros n p, rewrite [↑circle.encode, nat_succ_eq_int_succ, neg_succ, -power_con_inv,
|
||
@con_tr _ circle.code, transport_code_loop_inv, ↑[circle.encode] at p, p, -neg_succ] }},
|
||
{ apply pathover_of_tr_eq, apply eq_of_homotopy, intro a, apply @is_set.elim,
|
||
esimp, exact _} end end},
|
||
{ intro p, cases p, exact idp},
|
||
end
|
||
|
||
definition base_eq_base_equiv [constructor] : base = base ≃ ℤ :=
|
||
circle_eq_equiv base
|
||
|
||
definition decode_add (a b : ℤ) : circle.decode (a +[ℤ] b) = circle.decode a ⬝ circle.decode b :=
|
||
!power_con_power⁻¹
|
||
|
||
definition encode_con (p q : base = base)
|
||
: circle.encode (p ⬝ q) = circle.encode p +[ℤ] circle.encode q :=
|
||
preserve_binary_of_inv_preserve base_eq_base_equiv concat (@add ℤ _) decode_add p q
|
||
|
||
--the carrier of π₁(S¹) is the set-truncation of base = base.
|
||
open algebra trunc group
|
||
|
||
definition fg_carrier_equiv_int : π[1](S¹*) ≃ ℤ :=
|
||
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e @(trunc_equiv 0 ℤ) proof _ qed
|
||
|
||
definition con_comm_base (p q : base = base) : p ⬝ q = q ⬝ p :=
|
||
eq_of_fn_eq_fn base_eq_base_equiv (by esimp;rewrite [+encode_con,add.comm])
|
||
|
||
definition fundamental_group_of_circle : π₁(S¹*) ≃g gℤ :=
|
||
begin
|
||
apply (isomorphism_of_equiv fg_carrier_equiv_int),
|
||
intros g h,
|
||
induction g with g', induction h with h',
|
||
apply encode_con,
|
||
end
|
||
|
||
open nat
|
||
definition homotopy_group_of_circle (n : ℕ) : πg[n+2] S¹* ≃g G0 :=
|
||
begin
|
||
refine @trivial_homotopy_add_of_is_set_loopn S¹* 1 n _,
|
||
apply is_trunc_equiv_closed_rev, apply base_eq_base_equiv
|
||
end
|
||
|
||
definition eq_equiv_Z (x : S¹) : x = x ≃ ℤ :=
|
||
begin
|
||
induction x,
|
||
{ apply base_eq_base_equiv},
|
||
{ apply equiv_pathover, intro p p' q, apply pathover_of_eq,
|
||
note H := eq_of_square (square_of_pathover q),
|
||
rewrite con_comm_base at H,
|
||
note H' := cancel_left _ H,
|
||
induction H', reflexivity}
|
||
end
|
||
|
||
proposition is_trunc_circle [instance] : is_trunc 1 S¹ :=
|
||
begin
|
||
apply is_trunc_succ_of_is_trunc_loop,
|
||
{ apply trunc_index.minus_one_le_succ},
|
||
{ intro x, apply is_trunc_equiv_closed_rev, apply eq_equiv_Z}
|
||
end
|
||
|
||
proposition is_conn_circle [instance] : is_conn 0 S¹ :=
|
||
sphere.is_conn_sphere 1
|
||
|
||
definition is_conn_pcircle [instance] : is_conn 0 S¹* := !is_conn_circle
|
||
definition is_trunc_pcircle [instance] : is_trunc 1 S¹* := !is_trunc_circle
|
||
|
||
definition circle_mul [reducible] (x y : S¹) : S¹ :=
|
||
circle.elim y (circle_turn y) x
|
||
|
||
definition circle_mul_base (x : S¹) : circle_mul x base = x :=
|
||
begin
|
||
induction x,
|
||
{ reflexivity },
|
||
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_loop }
|
||
end
|
||
|
||
definition circle_base_mul [reducible] (x : S¹) : circle_mul base x = x :=
|
||
idp
|
||
|
||
/-
|
||
Suppose for `f, g : A -> B` we prove a homotopy `H : f ~ g` by induction on the element in `A`.
|
||
And suppose `p : a = a'` is a path constructor in `A`.
|
||
Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal
|
||
to the square which defined H on the path constructor
|
||
-/
|
||
|
||
definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
|
||
(q : square p p (ap f loop) (ap g loop))
|
||
: natural_square (circle.rec p (eq_pathover q)) loop = q :=
|
||
begin
|
||
refine ap square_of_pathover !rec_loop ⬝ _,
|
||
exact to_right_inv !eq_pathover_equiv_square q
|
||
end
|
||
|
||
definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) :
|
||
circle.elim a p x = a :=
|
||
begin
|
||
induction x,
|
||
{ reflexivity },
|
||
{ apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r }
|
||
end
|
||
|
||
end circle
|