lean2/hott/homotopy/interval.hlean
Floris van Doorn ddef24223b make pointed suspensions, wedges and spheres the default (in contrast to the unpointed ones), remove sphere_index
All HITs which automatically have a point are pointed without a 'p' in front. HITs which do not automatically have a point do still have a p (e.g. pushout/ppushout).

There were a lot of annoyances with spheres being indexed by N_{-1} with almost no extra generality. We now index the spheres by nat, making sphere 0 = pbool.
2017-07-20 15:02:09 +01:00

101 lines
3.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the interval
-/
import .susp types.eq types.prod cubical.square
open eq susp unit equiv is_trunc nat prod pointed
definition interval : Type₀ := susp unit
namespace interval
definition zero : interval := north
definition one : interval := south
definition seg : zero = one := merid star
protected definition rec {P : interval → Type} (P0 : P zero) (P1 : P one)
(Ps : P0 =[seg] P1) (x : interval) : P x :=
begin
fapply susp.rec_on x,
{ exact P0},
{ exact P1},
{ intro x, cases x, exact Ps}
end
protected definition rec_on [reducible] {P : interval → Type} (x : interval)
(P0 : P zero) (P1 : P one) (Ps : P0 =[seg] P1) : P x :=
interval.rec P0 P1 Ps x
theorem rec_seg {P : interval → Type} (P0 : P zero) (P1 : P one) (Ps : P0 =[seg] P1)
: apd (interval.rec P0 P1 Ps) seg = Ps :=
!rec_merid
protected definition elim {P : Type} (P0 P1 : P) (Ps : P0 = P1) (x : interval) : P :=
interval.rec P0 P1 (pathover_of_eq _ Ps) x
protected definition elim_on [reducible] {P : Type} (x : interval) (P0 P1 : P)
(Ps : P0 = P1) : P :=
interval.elim P0 P1 Ps x
theorem elim_seg {P : Type} (P0 P1 : P) (Ps : P0 = P1)
: ap (interval.elim P0 P1 Ps) seg = Ps :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant seg),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑interval.elim,rec_seg],
end
protected definition elim_type (P0 P1 : Type) (Ps : P0 ≃ P1) (x : interval) : Type :=
interval.elim P0 P1 (ua Ps) x
protected definition elim_type_on [reducible] (x : interval) (P0 P1 : Type) (Ps : P0 ≃ P1)
: Type :=
interval.elim_type P0 P1 Ps x
theorem elim_type_seg (P0 P1 : Type) (Ps : P0 ≃ P1)
: transport (interval.elim_type P0 P1 Ps) seg = Ps :=
by rewrite [tr_eq_cast_ap_fn,↑interval.elim_type,elim_seg];apply cast_ua_fn
definition is_contr_interval [instance] [priority 900] : is_contr interval :=
is_contr.mk zero (λx, interval.rec_on x idp seg !eq_pathover_r_idp)
definition naive_funext_of_interval : naive_funext :=
λA P f g p, ap (λ(i : interval) (x : A), interval.elim_on i (f x) (g x) (p x)) seg
definition funext_of_interval : funext :=
funext_from_naive_funext naive_funext_of_interval
end interval open interval
definition cube : → Type₀
| cube 0 := unit
| cube (succ n) := cube n × interval
abbreviation square := cube (succ (succ nat.zero))
definition cube_one_equiv_interval : cube 1 ≃ interval :=
!prod_comm_equiv ⬝e !prod_unit_equiv
definition prod_square {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b = b')
: square (pair_eq p idp) (pair_eq p idp) (pair_eq idp q) (pair_eq idp q) :=
by cases p; cases q; exact ids
namespace square
definition tl : square := (star, zero, zero)
definition tr : square := (star, one, zero)
definition bl : square := (star, zero, one )
definition br : square := (star, one, one )
-- s stands for "square" in the following definitions
definition st : tl = tr := pair_eq (pair_eq idp seg) idp
definition sb : bl = br := pair_eq (pair_eq idp seg) idp
definition sl : tl = bl := pair_eq idp seg
definition sr : tr = br := pair_eq idp seg
definition sfill : square st sb sl sr := !prod_square
definition fill : st ⬝ sr = sl ⬝ sb := !square_equiv_eq sfill
end square