lean2/hott/homotopy/join.hlean

536 lines
22 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Ulrik Buchholtz
Declaration of a join as a special case of a pushout
-/
import hit.pushout .sphere cubical.cube
open eq function prod equiv is_trunc bool sigma.ops pointed
definition join (A B : Type) : Type := @pushout.pushout (A × B) A B pr1 pr2
namespace join
section
variables {A B : Type}
definition inl (a : A) : join A B := @pushout.inl (A × B) A B pr1 pr2 a
definition inr (b : B) : join A B := @pushout.inr (A × B) A B pr1 pr2 b
definition glue (a : A) (b : B) : inl a = inr b :=
@pushout.glue (A × B) A B pr1 pr2 (a, b)
protected definition rec {P : join A B → Type}
(Pinl : Π(x : A), P (inl x))
(Pinr : Π(y : B), P (inr y))
(Pglue : Π(x : A)(y : B), Pinl x =[glue x y] Pinr y)
(z : join A B) : P z :=
pushout.rec Pinl Pinr (prod.rec Pglue) z
protected definition rec_glue {P : join A B → Type}
(Pinl : Π(x : A), P (inl x))
(Pinr : Π(y : B), P (inr y))
(Pglue : Π(x : A)(y : B), Pinl x =[glue x y] Pinr y)
(x : A) (y : B)
: apd (join.rec Pinl Pinr Pglue) (glue x y) = Pglue x y :=
!quotient.rec_eq_of_rel
protected definition elim {P : Type} (Pinl : A → P) (Pinr : B → P)
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) (z : join A B) : P :=
join.rec Pinl Pinr (λx y, pathover_of_eq _ (Pglue x y)) z
protected definition elim_glue {P : Type} (Pinl : A → P) (Pinr : B → P)
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) (x : A) (y : B)
: ap (join.elim Pinl Pinr Pglue) (glue x y) = Pglue x y :=
begin
apply equiv.eq_of_fn_eq_fn_inv !(pathover_constant (glue x y)),
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑join.elim],
apply join.rec_glue
end
protected definition elim_ap_inl {P : Type} (Pinl : A → P) (Pinr : B → P)
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) {a a' : A} (p : a = a')
: ap (join.elim Pinl Pinr Pglue) (ap inl p) = ap Pinl p :=
by cases p; reflexivity
protected definition hsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
square (ap inl p) (ap inr q) (glue a b) (glue a' b') :=
by induction p; induction q; exact hrfl
protected definition vsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
square (glue a b) (glue a' b') (ap inl p) (ap inr q) :=
by induction p; induction q; exact vrfl
end
end join open join
definition pjoin [constructor] (A B : Type*) : Type* := pointed.MK (join A B) (inl pt)
attribute join.inl join.inr [constructor]
attribute join.rec [recursor]
attribute join.elim [recursor 7]
attribute join.rec join.elim [unfold 7]
notation ` ★ `:40 := pjoin
/- Diamonds in joins -/
namespace join
variables {A B : Type}
protected definition diamond (a a' : A) (b b' : B) :=
square (glue a b) (glue a' b')⁻¹ (glue a b') (glue a' b)⁻¹
protected definition hdiamond {a a' : A} (b b' : B) (p : a = a')
: join.diamond a a' b b' :=
begin
cases p, unfold join.diamond,
assert H : (glue a b' ⬝ (glue a b')⁻¹ ⬝ (glue a b)⁻¹⁻¹) = glue a b,
{ rewrite [con.right_inv,inv_inv,idp_con] },
exact H ▸ top_deg_square (glue a b') (glue a b')⁻¹ (glue a b)⁻¹,
end
protected definition vdiamond (a a' : A) {b b' : B} (q : b = b')
: join.diamond a a' b b' :=
begin
cases q, unfold join.diamond,
assert H : (glue a b ⬝ (glue a' b)⁻¹ ⬝ (glue a' b)⁻¹⁻¹) = glue a b,
{ rewrite [con.assoc,con.right_inv] },
exact H ▸ top_deg_square (glue a b) (glue a' b)⁻¹ (glue a' b)⁻¹
end
protected definition symm_diamond (a : A) (b : B)
: join.vdiamond a a idp = join.hdiamond b b idp :=
begin
unfold join.hdiamond, unfold join.vdiamond,
assert H : Π{X : Type} ⦃x y : X⦄ (p : x = y),
eq.rec (eq.rec (refl p) (symm (con.right_inv p⁻¹)))
(symm (con.assoc p p⁻¹ p⁻¹⁻¹)) ▸ top_deg_square p p⁻¹ p⁻¹
= eq.rec (eq.rec (eq.rec (refl p) (symm (idp_con p))) (symm (inv_inv p)))
(symm (con.right_inv p)) ▸ top_deg_square p p⁻¹ p⁻¹
:> square p p⁻¹ p p⁻¹,
{ intros X x y p, cases p, reflexivity },
apply H (glue a b)
end
end join
namespace join
variables {A₁ A₂ B₁ B₂ : Type}
definition join_functor [reducible]
(f : A₁ → A₂) (g : B₁ → B₂) : join A₁ B₁ → join A₂ B₂ :=
begin
intro x, induction x with a b a b,
{ exact inl (f a) }, { exact inr (g b) }, { apply glue }
end
protected definition ap_diamond (f : A₁ → A₂) (g : B₁ → B₂)
{a a' : A₁} {b b' : B₁}
: join.diamond a a' b b' → join.diamond (f a) (f a') (g b) (g b') :=
begin
unfold join.diamond, intro s,
note s' := aps (join_functor f g) s,
do 2 rewrite eq.ap_inv at s',
do 4 rewrite join.elim_glue at s', exact s'
end
definition join_equiv_join
: A₁ ≃ A₂ → B₁ ≃ B₂ → join A₁ B₁ ≃ join A₂ B₂ :=
begin
intros H K,
fapply equiv.MK,
{ intro x, induction x with a b a b,
{ exact inl (to_fun H a) }, { exact inr (to_fun K b) },
{ apply glue } },
{ intro y, induction y with a b a b,
{ exact inl (to_inv H a) }, { exact inr (to_inv K b) },
{ apply glue } },
{ intro y, induction y with a b a b,
{ apply ap inl, apply to_right_inv },
{ apply ap inr, apply to_right_inv },
{ apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (join.elim _ _ _)),
do 2 krewrite join.elim_glue, apply join.hsquare } },
{ intro x, induction x with a b a b,
{ apply ap inl, apply to_left_inv },
{ apply ap inr, apply to_left_inv },
{ apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (join.elim _ _ _)),
do 2 krewrite join.elim_glue, apply join.hsquare } }
end
protected definition twist_diamond {A : Type} {a a' : A} (p : a = a')
: pathover (λx, join.diamond a' x a x)
(join.vdiamond a' a idp) p
(join.hdiamond a a' idp) :=
begin
cases p, apply pathover_idp_of_eq, apply join.symm_diamond
end
definition join_empty (A : Type) : join empty A ≃ A :=
begin
fapply equiv.MK,
{ intro x, induction x with z a z a,
{ induction z },
{ exact a },
{ induction z } },
{ intro a, exact inr a },
{ intro a, reflexivity },
{ intro x, induction x with z a z a,
{ induction z },
{ reflexivity },
{ induction z } }
end
definition join_bool (A : Type) : join bool A ≃ susp A :=
begin
fapply equiv.MK,
{ intro ba, induction ba with [b, a, b, a],
{ induction b, exact susp.south, exact susp.north },
{ exact susp.north },
{ induction b, esimp,
{ apply inverse, apply susp.merid, exact a },
{ reflexivity } } },
{ intro s, induction s with a,
{ exact inl tt },
{ exact inl ff },
{ exact (glue tt a) ⬝ (glue ff a)⁻¹ } },
{ intro s, induction s with a,
{ reflexivity },
{ reflexivity },
{ esimp, apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (join.elim _ _ _)),
rewrite [susp.elim_merid,ap_con,ap_inv],
krewrite [join.elim_glue,join.elim_glue],
esimp, rewrite [inv_inv,idp_con],
apply hdeg_square, reflexivity } },
{ intro ba, induction ba with [b, a, b, a], esimp,
{ induction b, do 2 reflexivity },
{ apply glue },
{ induction b,
{ esimp, apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (susp.elim _ _ _)),
krewrite join.elim_glue, rewrite ap_inv,
krewrite susp.elim_merid,
apply square_of_eq_top, apply inverse,
rewrite con.assoc, apply con.left_inv },
{ esimp, apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (susp.elim _ _ _)),
krewrite join.elim_glue, esimp,
apply square_of_eq_top,
rewrite [idp_con,con.right_inv] } } }
end
end join
namespace join
variables (A B C : Type)
definition is_contr_join [HA : is_contr A] :
is_contr (join A B) :=
begin
fapply is_contr.mk, exact inl (center A),
intro x, induction x with a b a b, apply ap inl, apply center_eq,
apply glue, apply pathover_of_tr_eq,
apply concat, apply eq_transport_Fr, esimp, rewrite ap_id,
generalize center_eq a, intro p, cases p, apply idp_con,
end
definition join_swap : join A B → join B A :=
begin
intro x, induction x with a b a b, exact inr a, exact inl b,
apply !glue⁻¹
end
definition join_swap_involutive (x : join A B) :
join_swap B A (join_swap A B x) = x :=
begin
induction x with a b a b, do 2 reflexivity,
apply eq_pathover, rewrite ap_id,
apply hdeg_square,
apply concat, apply ap_compose' (join.elim _ _ _),
krewrite [join.elim_glue, ap_inv, join.elim_glue], apply inv_inv,
end
definition join_symm : join A B ≃ join B A :=
by fapply equiv.MK; do 2 apply join_swap; do 2 apply join_swap_involutive
end join
/- This proves that the join operator is associative.
The proof is more or less ported from Evan Cavallo's agda version:
https://github.com/HoTT/HoTT-Agda/blob/master/homotopy/JoinAssocCubical.agda -/
namespace join
section join_switch
private definition massage_sq' {A : Type} {a₀₀ a₂₀ a₀₂ a₂₂ : A}
{p₁₀ : a₀₀ = a₂₀} {p₁₂ : a₀₂ = a₂₂} {p₀₁ : a₀₀ = a₀₂} {p₂₁ : a₂₀ = a₂₂}
(sq : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀⁻¹ p₀₁⁻¹ (p₂₁ ⬝ p₁₂⁻¹) idp :=
by induction sq; exact ids
private definition massage_sq {A : Type} {a₀₀ a₂₀ a₀₂ : A}
{p₁₀ : a₀₀ = a₂₀} {p₁₂ : a₀₂ = a₂₀} {p₀₁ : a₀₀ = a₀₂}
(sq : square p₁₀ p₁₂ p₀₁ idp) : square p₁₀⁻¹ p₀₁⁻¹ p₁₂⁻¹ idp :=
!idp_con⁻¹ ⬝ph (massage_sq' sq)
private definition ap_square_massage {A B : Type} (f : A → B) {a₀₀ a₀₂ a₂₀ : A}
{p₀₁ : a₀₀ = a₀₂} {p₁₀ : a₀₀ = a₂₀} {p₁₁ : a₂₀ = a₀₂} (sq : square p₀₁ p₁₁ p₁₀ idp) :
cube (hdeg_square (ap_inv f p₁₁)) ids
(aps f (massage_sq sq)) (massage_sq (aps f sq))
(hdeg_square !ap_inv) (hdeg_square !ap_inv) :=
by apply rec_on_r sq; apply idc
private definition massage_cube' {A : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ : A}
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀}
{p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂} {p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂}
{p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
{s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} {s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} {s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube (s₂₁₁ ⬝v s₁₁₂⁻¹ᵛ) vrfl (massage_sq' s₁₀₁) (massage_sq' s₁₂₁) s₁₁₀⁻¹ᵛ s₀₁₁⁻¹ᵛ :=
by cases c; apply idc
private definition massage_cube {A : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₀₂₂ : A}
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀}
{p₂₁₀ : a₂₀₀ = a₂₂₀} {p₁₀₂ : a₀₀₂ = a₂₀₀} {p₀₁₂ : a₀₀₂ = a₀₂₂}
{p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₂₂ : a₀₂₂ = a₂₂₀}
{s₁₁₀ : square p₀₁₀ _ _ _} {s₁₁₂ : square p₀₁₂ p₂₁₀ p₁₀₂ p₁₂₂}
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} --{s₂₁₁ : square p₂₁₀ p₂₁₀ idp idp}
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ idp} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ idp}
(c : cube s₀₁₁ vrfl s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube s₁₁₂⁻¹ᵛ vrfl (massage_sq s₁₀₁) (massage_sq s₁₂₁) s₁₁₀⁻¹ᵛ s₀₁₁⁻¹ᵛ :=
begin
cases p₁₀₀, cases p₁₀₂, cases p₁₂₂, note c' := massage_cube' c, esimp[massage_sq],
krewrite vdeg_v_eq_ph_pv_hp at c', exact c',
end
private definition massage_massage {A : Type} {a₀₀ a₀₂ a₂₀ : A}
{p₀₁ : a₀₀ = a₀₂} {p₁₀ : a₀₀ = a₂₀} {p₁₁ : a₂₀ = a₀₂} (sq : square p₀₁ p₁₁ p₁₀ idp) :
cube (hdeg_square !inv_inv) ids (massage_sq (massage_sq sq))
sq (hdeg_square !inv_inv) (hdeg_square !inv_inv) :=
by apply rec_on_r sq; apply idc
private definition square_Flr_ap_idp_cube {A B : Type} {b : B} {f : A → B}
{p₁ p₂ : Π a, f a = b} (α : Π a, p₁ a = p₂ a) {a₁ a₂ : A} (q : a₁ = a₂) :
cube hrfl hrfl (square_Flr_ap_idp p₁ q) (square_Flr_ap_idp p₂ q)
(hdeg_square (α _)) (hdeg_square (α _)) :=
by cases q; esimp[square_Flr_ap_idp]; apply deg3_cube; esimp
variables {A B C : Type}
definition switch_left [reducible] : join A B → join (join C B) A :=
begin
intro x, induction x with a b a b, exact inr a, exact inl (inr b), apply !glue⁻¹,
end
private definition switch_coh_fill_square (a : A) (b : B) (c : C) :=
square (glue (inl c) a)⁻¹ (ap inl (glue c b))⁻¹ (ap switch_left (glue a b)) idp
private definition switch_coh_fill_cube (a : A) (b : B) (c : C)
(sq : switch_coh_fill_square a b c) :=
cube (hdeg_square !join.elim_glue) ids
sq (massage_sq !square_Flr_ap_idp)
hrfl hrfl
private definition switch_coh_fill_type (a : A) (b : B) (c : C) :=
Σ sq : switch_coh_fill_square a b c, switch_coh_fill_cube a b c sq
private definition switch_coh_fill (a : A) (b : B) (c : C)
: switch_coh_fill_type a b c :=
by esimp; apply cube_fill101
private definition switch_coh (ab : join A B) (c : C) : switch_left ab = inl (inl c) :=
begin
induction ab with a b a b, apply !glue⁻¹, apply (ap inl !glue)⁻¹,
apply eq_pathover, refine _ ⬝hp !ap_constant⁻¹,
apply !switch_coh_fill.1,
end
protected definition switch [reducible] : join (join A B) C → join (join C B) A :=
begin
intro x, induction x with ab c ab c, exact switch_left ab, exact inl (inl c),
exact switch_coh ab c,
end
private definition switch_inv_left_square (a : A) (b : B) :
square idp idp (ap (!(@join.switch C) ∘ switch_left) (glue a b)) (ap inl (glue a b)) :=
begin
refine hdeg_square !ap_compose ⬝h _,
refine aps join.switch (hdeg_square !join.elim_glue) ⬝h _, esimp,
refine hdeg_square !(ap_inv join.switch) ⬝h _,
refine hrfl⁻¹ʰ⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left,switch_coh],
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _, esimp,
refine hrfl⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_coh_left (c : C) (a : A) :
square idp idp (ap !(@join.switch C B) (switch_coh (inl a) c)) (glue (inl a) c) :=
begin
refine hrfl ⬝h _,
refine aps join.switch hrfl ⬝h _, esimp[switch_coh],
refine hdeg_square !ap_inv ⬝h _,
refine hrfl⁻¹ʰ⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left],
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _,
refine hrfl⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_coh_right (c : C) (b : B) :
square idp idp (ap !(@join.switch _ _ A) (switch_coh (inr b) c)) (glue (inr b) c) :=
begin
refine hrfl ⬝h _,
refine aps join.switch hrfl ⬝h _, esimp[switch_coh],
refine hdeg_square !ap_inv ⬝h _,
refine (hdeg_square !ap_compose)⁻¹ʰ⁻¹ᵛ ⬝h _,
refine hrfl⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left],
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
end
private definition switch_inv_left (ab : join A B) :
!(@join.switch C) (join.switch (inl ab)) = inl ab :=
begin
induction ab with a b a b, do 2 reflexivity,
apply eq_pathover, exact !switch_inv_left_square,
end
section
variables (a : A) (b : B) (c : C)
private definition switch_inv_cube_aux1 {A B C : Type} {b : B} {f : A → B} (h : B → C)
(g : Π a, f a = b) {x y : A} (p : x = y) :
cube (hdeg_square (ap_compose h f p)) ids (square_Flr_ap_idp (λ a, ap h (g a)) p)
(aps h (square_Flr_ap_idp _ _)) hrfl hrfl :=
by cases p; esimp[square_Flr_ap_idp]; apply deg2_cube; cases (g x); esimp
private definition switch_inv_cube_aux2 {A B : Type} {b : B} {f : A → B}
(g : Π a, f a = b) {x y : A} (p : x = y) {sq : square (g x) (g y) (ap f p) idp}
(q : apd g p = eq_pathover (sq ⬝hp !ap_constant⁻¹)) : square_Flr_ap_idp _ _ = sq :=
begin
cases p, esimp at *, apply concat, apply inverse, apply vdeg_square_idp,
apply concat, apply ap vdeg_square, exact ap eq_of_pathover_idp q,
krewrite (is_equiv.right_inv (equiv.to_fun !pathover_idp)),
exact is_equiv.left_inv (equiv.to_fun (vdeg_square_equiv _ _)) sq,
end
private definition switch_inv_cube (a : A) (b : B) (c : C) :
cube (switch_inv_left_square a b) ids (square_Flr_ap_idp _ _)
(square_Flr_ap_idp _ _) (switch_inv_coh_left c a) (switch_inv_coh_right c b) :=
begin
esimp [switch_inv_coh_left, switch_inv_coh_right, switch_inv_left_square],
apply cube_concat2, apply switch_inv_cube_aux1,
apply cube_concat2, apply cube_transport101, apply inverse,
apply ap (λ x, aps join.switch x), apply switch_inv_cube_aux2, apply join.rec_glue,
apply apc, apply (switch_coh_fill a b c).2,
apply cube_concat2, esimp, apply ap_square_massage,
apply cube_concat2, apply massage_cube, apply cube_inverse2, apply switch_inv_cube_aux1,
apply cube_concat2, apply massage_cube, apply square_Flr_ap_idp_cube,
apply cube_concat2, apply massage_cube, apply cube_transport101,
apply inverse, apply switch_inv_cube_aux2,
esimp[switch_coh], apply join.rec_glue, apply (switch_coh_fill c b a).2,
apply massage_massage,
end
end
private definition pathover_of_triangle_cube {A B : Type} {b₀ b₁ : A → B}
{b : B} {p₀₁ : Π a, b₀ a = b₁ a} {p₀ : Π a, b₀ a = b} {p₁ : Π a, b₁ a = b}
{x y : A} {q : x = y} {sqx : square (p₀₁ x) idp (p₀ x) (p₁ x)}
{sqy : square (p₀₁ y) idp (p₀ y) (p₁ y)}
(c : cube (natural_square _ _) ids (square_Flr_ap_idp p₀ q) (square_Flr_ap_idp p₁ q)
sqx sqy) :
sqx =[q] sqy :=
by cases q; apply pathover_of_eq_tr; apply eq_of_deg12_cube; exact c
private definition pathover_of_ap_ap_square {A : Type} {x y : A} {p : x = y}
(g : B → A) (f : A → B) {u : g (f x) = x} {v : g (f y) = y}
(sq : square (ap g (ap f p)) p u v) : u =[p] v :=
by cases p; apply eq_pathover; apply transpose; exact sq
private definition natural_square_beta {A B : Type} {f₁ f₂ : A → B}
(p : Π a, f₁ a = f₂ a) {x y : A} (q : x = y) {sq : square (p x) (p y) (ap f₁ q) (ap f₂ q)}
(e : apd p q = eq_pathover sq) :
natural_square p q = sq :=
begin
cases q, esimp at *, apply concat, apply inverse, apply vdeg_square_idp,
apply concat, apply ap vdeg_square, apply ap eq_of_pathover_idp e,
krewrite (is_equiv.right_inv (equiv.to_fun !pathover_idp)),
exact is_equiv.left_inv (equiv.to_fun (vdeg_square_equiv _ _)) sq,
end
private definition switch_inv_coh (c : C) (k : join A B) :
square (switch_inv_left k) idp (ap join.switch (switch_coh k c)) (glue k c) :=
begin
induction k with a b a b, apply switch_inv_coh_left, apply switch_inv_coh_right,
refine pathover_of_triangle_cube _,
esimp, apply cube_transport011,
apply inverse, rotate 1, apply switch_inv_cube,
apply natural_square_beta, apply join.rec_glue,
end
protected definition switch_involutive (x : join (join A B) C) :
join.switch (join.switch x) = x :=
begin
induction x with ab c ab c, apply switch_inv_left, reflexivity,
apply pathover_of_ap_ap_square join.switch join.switch,
krewrite join.elim_glue, esimp,
apply transpose, exact !switch_inv_coh,
end
end join_switch
definition join_switch_equiv (A B C : Type) : join (join A B) C ≃ join (join C B) A :=
by apply equiv.MK; do 2 apply join.switch_involutive
definition join_assoc (A B C : Type) : join (join A B) C ≃ join A (join B C) :=
calc join (join A B) C ≃ join (join C B) A : join_switch_equiv
... ≃ join A (join C B) : join_symm
... ≃ join A (join B C) : join_equiv_join erfl (join_symm C B)
definition ap_join_assoc_inv_glue_inl {A B : Type} (C : Type) (a : A) (b : B)
: ap (to_inv (join_assoc A B C)) (glue a (inl b)) = ap inl (glue a b) :=
begin
unfold join_assoc, rewrite ap_compose, krewrite join.elim_glue,
rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue,
unfold switch_coh, unfold join_symm, unfold join_swap, esimp, rewrite inv_inv
end
protected definition ap_assoc_inv_glue_inr {A C : Type} (B : Type) (a : A) (c : C)
: ap (to_inv (join_assoc A B C)) (glue a (inr c)) = glue (inl a) c :=
begin
unfold join_assoc, rewrite ap_compose, krewrite join.elim_glue,
rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue,
unfold switch_coh, unfold join_symm, unfold join_swap, esimp, rewrite inv_inv
end
end join
namespace join
open sphere sphere.ops
definition join_susp (A B : Type) : join (susp A) B ≃ susp (join A B) :=
calc join (susp A) B
≃ join (join bool A) B
: join_equiv_join (join_bool A)⁻¹ᵉ erfl
... ≃ join bool (join A B)
: join_assoc
... ≃ susp (join A B)
: join_bool (join A B)
definition join_sphere (n m : ) : join (S n) (S m) ≃ S (n+m+1) :=
begin
refine join_symm (S n) (S m) ⬝e _,
induction m with m IH,
{ exact join_bool (S n) },
{ calc join (S (m+1)) (S n)
≃ susp (join (S m) (S n))
: join_susp (S m) (S n)
... ≃ sphere (n+m+2)
: susp.equiv IH }
end
end join