536 lines
22 KiB
Text
536 lines
22 KiB
Text
/-
|
||
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jakob von Raumer, Ulrik Buchholtz
|
||
|
||
Declaration of a join as a special case of a pushout
|
||
-/
|
||
|
||
import hit.pushout .sphere cubical.cube
|
||
|
||
open eq function prod equiv is_trunc bool sigma.ops pointed
|
||
|
||
definition join (A B : Type) : Type := @pushout.pushout (A × B) A B pr1 pr2
|
||
|
||
namespace join
|
||
section
|
||
variables {A B : Type}
|
||
|
||
definition inl (a : A) : join A B := @pushout.inl (A × B) A B pr1 pr2 a
|
||
definition inr (b : B) : join A B := @pushout.inr (A × B) A B pr1 pr2 b
|
||
|
||
definition glue (a : A) (b : B) : inl a = inr b :=
|
||
@pushout.glue (A × B) A B pr1 pr2 (a, b)
|
||
|
||
protected definition rec {P : join A B → Type}
|
||
(Pinl : Π(x : A), P (inl x))
|
||
(Pinr : Π(y : B), P (inr y))
|
||
(Pglue : Π(x : A)(y : B), Pinl x =[glue x y] Pinr y)
|
||
(z : join A B) : P z :=
|
||
pushout.rec Pinl Pinr (prod.rec Pglue) z
|
||
|
||
protected definition rec_glue {P : join A B → Type}
|
||
(Pinl : Π(x : A), P (inl x))
|
||
(Pinr : Π(y : B), P (inr y))
|
||
(Pglue : Π(x : A)(y : B), Pinl x =[glue x y] Pinr y)
|
||
(x : A) (y : B)
|
||
: apd (join.rec Pinl Pinr Pglue) (glue x y) = Pglue x y :=
|
||
!quotient.rec_eq_of_rel
|
||
|
||
protected definition elim {P : Type} (Pinl : A → P) (Pinr : B → P)
|
||
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) (z : join A B) : P :=
|
||
join.rec Pinl Pinr (λx y, pathover_of_eq _ (Pglue x y)) z
|
||
|
||
protected definition elim_glue {P : Type} (Pinl : A → P) (Pinr : B → P)
|
||
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) (x : A) (y : B)
|
||
: ap (join.elim Pinl Pinr Pglue) (glue x y) = Pglue x y :=
|
||
begin
|
||
apply equiv.eq_of_fn_eq_fn_inv !(pathover_constant (glue x y)),
|
||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑join.elim],
|
||
apply join.rec_glue
|
||
end
|
||
|
||
protected definition elim_ap_inl {P : Type} (Pinl : A → P) (Pinr : B → P)
|
||
(Pglue : Π(x : A)(y : B), Pinl x = Pinr y) {a a' : A} (p : a = a')
|
||
: ap (join.elim Pinl Pinr Pglue) (ap inl p) = ap Pinl p :=
|
||
by cases p; reflexivity
|
||
|
||
protected definition hsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
|
||
square (ap inl p) (ap inr q) (glue a b) (glue a' b') :=
|
||
by induction p; induction q; exact hrfl
|
||
|
||
protected definition vsquare {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
|
||
square (glue a b) (glue a' b') (ap inl p) (ap inr q) :=
|
||
by induction p; induction q; exact vrfl
|
||
|
||
end
|
||
|
||
end join open join
|
||
|
||
definition pjoin [constructor] (A B : Type*) : Type* := pointed.MK (join A B) (inl pt)
|
||
|
||
attribute join.inl join.inr [constructor]
|
||
attribute join.rec [recursor]
|
||
attribute join.elim [recursor 7]
|
||
attribute join.rec join.elim [unfold 7]
|
||
|
||
notation ` ★ `:40 := pjoin
|
||
|
||
/- Diamonds in joins -/
|
||
namespace join
|
||
variables {A B : Type}
|
||
|
||
protected definition diamond (a a' : A) (b b' : B) :=
|
||
square (glue a b) (glue a' b')⁻¹ (glue a b') (glue a' b)⁻¹
|
||
|
||
protected definition hdiamond {a a' : A} (b b' : B) (p : a = a')
|
||
: join.diamond a a' b b' :=
|
||
begin
|
||
cases p, unfold join.diamond,
|
||
assert H : (glue a b' ⬝ (glue a b')⁻¹ ⬝ (glue a b)⁻¹⁻¹) = glue a b,
|
||
{ rewrite [con.right_inv,inv_inv,idp_con] },
|
||
exact H ▸ top_deg_square (glue a b') (glue a b')⁻¹ (glue a b)⁻¹,
|
||
end
|
||
|
||
protected definition vdiamond (a a' : A) {b b' : B} (q : b = b')
|
||
: join.diamond a a' b b' :=
|
||
begin
|
||
cases q, unfold join.diamond,
|
||
assert H : (glue a b ⬝ (glue a' b)⁻¹ ⬝ (glue a' b)⁻¹⁻¹) = glue a b,
|
||
{ rewrite [con.assoc,con.right_inv] },
|
||
exact H ▸ top_deg_square (glue a b) (glue a' b)⁻¹ (glue a' b)⁻¹
|
||
end
|
||
|
||
protected definition symm_diamond (a : A) (b : B)
|
||
: join.vdiamond a a idp = join.hdiamond b b idp :=
|
||
begin
|
||
unfold join.hdiamond, unfold join.vdiamond,
|
||
assert H : Π{X : Type} ⦃x y : X⦄ (p : x = y),
|
||
eq.rec (eq.rec (refl p) (symm (con.right_inv p⁻¹)))
|
||
(symm (con.assoc p p⁻¹ p⁻¹⁻¹)) ▸ top_deg_square p p⁻¹ p⁻¹
|
||
= eq.rec (eq.rec (eq.rec (refl p) (symm (idp_con p))) (symm (inv_inv p)))
|
||
(symm (con.right_inv p)) ▸ top_deg_square p p⁻¹ p⁻¹
|
||
:> square p p⁻¹ p p⁻¹,
|
||
{ intros X x y p, cases p, reflexivity },
|
||
apply H (glue a b)
|
||
end
|
||
|
||
end join
|
||
|
||
namespace join
|
||
|
||
variables {A₁ A₂ B₁ B₂ : Type}
|
||
definition join_functor [reducible]
|
||
(f : A₁ → A₂) (g : B₁ → B₂) : join A₁ B₁ → join A₂ B₂ :=
|
||
begin
|
||
intro x, induction x with a b a b,
|
||
{ exact inl (f a) }, { exact inr (g b) }, { apply glue }
|
||
end
|
||
|
||
protected definition ap_diamond (f : A₁ → A₂) (g : B₁ → B₂)
|
||
{a a' : A₁} {b b' : B₁}
|
||
: join.diamond a a' b b' → join.diamond (f a) (f a') (g b) (g b') :=
|
||
begin
|
||
unfold join.diamond, intro s,
|
||
note s' := aps (join_functor f g) s,
|
||
do 2 rewrite eq.ap_inv at s',
|
||
do 4 rewrite join.elim_glue at s', exact s'
|
||
end
|
||
|
||
definition join_equiv_join
|
||
: A₁ ≃ A₂ → B₁ ≃ B₂ → join A₁ B₁ ≃ join A₂ B₂ :=
|
||
begin
|
||
intros H K,
|
||
fapply equiv.MK,
|
||
{ intro x, induction x with a b a b,
|
||
{ exact inl (to_fun H a) }, { exact inr (to_fun K b) },
|
||
{ apply glue } },
|
||
{ intro y, induction y with a b a b,
|
||
{ exact inl (to_inv H a) }, { exact inr (to_inv K b) },
|
||
{ apply glue } },
|
||
{ intro y, induction y with a b a b,
|
||
{ apply ap inl, apply to_right_inv },
|
||
{ apply ap inr, apply to_right_inv },
|
||
{ apply eq_pathover, rewrite ap_id,
|
||
rewrite (ap_compose' (join.elim _ _ _)),
|
||
do 2 krewrite join.elim_glue, apply join.hsquare } },
|
||
{ intro x, induction x with a b a b,
|
||
{ apply ap inl, apply to_left_inv },
|
||
{ apply ap inr, apply to_left_inv },
|
||
{ apply eq_pathover, rewrite ap_id,
|
||
rewrite (ap_compose' (join.elim _ _ _)),
|
||
do 2 krewrite join.elim_glue, apply join.hsquare } }
|
||
end
|
||
|
||
protected definition twist_diamond {A : Type} {a a' : A} (p : a = a')
|
||
: pathover (λx, join.diamond a' x a x)
|
||
(join.vdiamond a' a idp) p
|
||
(join.hdiamond a a' idp) :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq, apply join.symm_diamond
|
||
end
|
||
|
||
definition join_empty (A : Type) : join empty A ≃ A :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro x, induction x with z a z a,
|
||
{ induction z },
|
||
{ exact a },
|
||
{ induction z } },
|
||
{ intro a, exact inr a },
|
||
{ intro a, reflexivity },
|
||
{ intro x, induction x with z a z a,
|
||
{ induction z },
|
||
{ reflexivity },
|
||
{ induction z } }
|
||
end
|
||
|
||
definition join_bool (A : Type) : join bool A ≃ susp A :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro ba, induction ba with [b, a, b, a],
|
||
{ induction b, exact susp.south, exact susp.north },
|
||
{ exact susp.north },
|
||
{ induction b, esimp,
|
||
{ apply inverse, apply susp.merid, exact a },
|
||
{ reflexivity } } },
|
||
{ intro s, induction s with a,
|
||
{ exact inl tt },
|
||
{ exact inl ff },
|
||
{ exact (glue tt a) ⬝ (glue ff a)⁻¹ } },
|
||
{ intro s, induction s with a,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ esimp, apply eq_pathover, rewrite ap_id,
|
||
rewrite (ap_compose' (join.elim _ _ _)),
|
||
rewrite [susp.elim_merid,ap_con,ap_inv],
|
||
krewrite [join.elim_glue,join.elim_glue],
|
||
esimp, rewrite [inv_inv,idp_con],
|
||
apply hdeg_square, reflexivity } },
|
||
{ intro ba, induction ba with [b, a, b, a], esimp,
|
||
{ induction b, do 2 reflexivity },
|
||
{ apply glue },
|
||
{ induction b,
|
||
{ esimp, apply eq_pathover, rewrite ap_id,
|
||
rewrite (ap_compose' (susp.elim _ _ _)),
|
||
krewrite join.elim_glue, rewrite ap_inv,
|
||
krewrite susp.elim_merid,
|
||
apply square_of_eq_top, apply inverse,
|
||
rewrite con.assoc, apply con.left_inv },
|
||
{ esimp, apply eq_pathover, rewrite ap_id,
|
||
rewrite (ap_compose' (susp.elim _ _ _)),
|
||
krewrite join.elim_glue, esimp,
|
||
apply square_of_eq_top,
|
||
rewrite [idp_con,con.right_inv] } } }
|
||
end
|
||
|
||
end join
|
||
|
||
namespace join
|
||
variables (A B C : Type)
|
||
|
||
definition is_contr_join [HA : is_contr A] :
|
||
is_contr (join A B) :=
|
||
begin
|
||
fapply is_contr.mk, exact inl (center A),
|
||
intro x, induction x with a b a b, apply ap inl, apply center_eq,
|
||
apply glue, apply pathover_of_tr_eq,
|
||
apply concat, apply eq_transport_Fr, esimp, rewrite ap_id,
|
||
generalize center_eq a, intro p, cases p, apply idp_con,
|
||
end
|
||
|
||
definition join_swap : join A B → join B A :=
|
||
begin
|
||
intro x, induction x with a b a b, exact inr a, exact inl b,
|
||
apply !glue⁻¹
|
||
end
|
||
|
||
definition join_swap_involutive (x : join A B) :
|
||
join_swap B A (join_swap A B x) = x :=
|
||
begin
|
||
induction x with a b a b, do 2 reflexivity,
|
||
apply eq_pathover, rewrite ap_id,
|
||
apply hdeg_square,
|
||
apply concat, apply ap_compose' (join.elim _ _ _),
|
||
krewrite [join.elim_glue, ap_inv, join.elim_glue], apply inv_inv,
|
||
end
|
||
|
||
definition join_symm : join A B ≃ join B A :=
|
||
by fapply equiv.MK; do 2 apply join_swap; do 2 apply join_swap_involutive
|
||
|
||
end join
|
||
|
||
/- This proves that the join operator is associative.
|
||
The proof is more or less ported from Evan Cavallo's agda version:
|
||
https://github.com/HoTT/HoTT-Agda/blob/master/homotopy/JoinAssocCubical.agda -/
|
||
namespace join
|
||
|
||
section join_switch
|
||
|
||
private definition massage_sq' {A : Type} {a₀₀ a₂₀ a₀₂ a₂₂ : A}
|
||
{p₁₀ : a₀₀ = a₂₀} {p₁₂ : a₀₂ = a₂₂} {p₀₁ : a₀₀ = a₀₂} {p₂₁ : a₂₀ = a₂₂}
|
||
(sq : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀⁻¹ p₀₁⁻¹ (p₂₁ ⬝ p₁₂⁻¹) idp :=
|
||
by induction sq; exact ids
|
||
|
||
private definition massage_sq {A : Type} {a₀₀ a₂₀ a₀₂ : A}
|
||
{p₁₀ : a₀₀ = a₂₀} {p₁₂ : a₀₂ = a₂₀} {p₀₁ : a₀₀ = a₀₂}
|
||
(sq : square p₁₀ p₁₂ p₀₁ idp) : square p₁₀⁻¹ p₀₁⁻¹ p₁₂⁻¹ idp :=
|
||
!idp_con⁻¹ ⬝ph (massage_sq' sq)
|
||
|
||
private definition ap_square_massage {A B : Type} (f : A → B) {a₀₀ a₀₂ a₂₀ : A}
|
||
{p₀₁ : a₀₀ = a₀₂} {p₁₀ : a₀₀ = a₂₀} {p₁₁ : a₂₀ = a₀₂} (sq : square p₀₁ p₁₁ p₁₀ idp) :
|
||
cube (hdeg_square (ap_inv f p₁₁)) ids
|
||
(aps f (massage_sq sq)) (massage_sq (aps f sq))
|
||
(hdeg_square !ap_inv) (hdeg_square !ap_inv) :=
|
||
by apply rec_on_r sq; apply idc
|
||
|
||
private definition massage_cube' {A : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ : A}
|
||
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀}
|
||
{p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂} {p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂}
|
||
{p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
|
||
{s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} {s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
||
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} {s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
||
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||
cube (s₂₁₁ ⬝v s₁₁₂⁻¹ᵛ) vrfl (massage_sq' s₁₀₁) (massage_sq' s₁₂₁) s₁₁₀⁻¹ᵛ s₀₁₁⁻¹ᵛ :=
|
||
by cases c; apply idc
|
||
|
||
private definition massage_cube {A : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₀₂₂ : A}
|
||
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀}
|
||
{p₂₁₀ : a₂₀₀ = a₂₂₀} {p₁₀₂ : a₀₀₂ = a₂₀₀} {p₀₁₂ : a₀₀₂ = a₀₂₂}
|
||
{p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₂₂ : a₀₂₂ = a₂₂₀}
|
||
{s₁₁₀ : square p₀₁₀ _ _ _} {s₁₁₂ : square p₀₁₂ p₂₁₀ p₁₀₂ p₁₂₂}
|
||
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} --{s₂₁₁ : square p₂₁₀ p₂₁₀ idp idp}
|
||
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ idp} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ idp}
|
||
(c : cube s₀₁₁ vrfl s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||
cube s₁₁₂⁻¹ᵛ vrfl (massage_sq s₁₀₁) (massage_sq s₁₂₁) s₁₁₀⁻¹ᵛ s₀₁₁⁻¹ᵛ :=
|
||
begin
|
||
cases p₁₀₀, cases p₁₀₂, cases p₁₂₂, note c' := massage_cube' c, esimp[massage_sq],
|
||
krewrite vdeg_v_eq_ph_pv_hp at c', exact c',
|
||
end
|
||
|
||
private definition massage_massage {A : Type} {a₀₀ a₀₂ a₂₀ : A}
|
||
{p₀₁ : a₀₀ = a₀₂} {p₁₀ : a₀₀ = a₂₀} {p₁₁ : a₂₀ = a₀₂} (sq : square p₀₁ p₁₁ p₁₀ idp) :
|
||
cube (hdeg_square !inv_inv) ids (massage_sq (massage_sq sq))
|
||
sq (hdeg_square !inv_inv) (hdeg_square !inv_inv) :=
|
||
by apply rec_on_r sq; apply idc
|
||
|
||
private definition square_Flr_ap_idp_cube {A B : Type} {b : B} {f : A → B}
|
||
{p₁ p₂ : Π a, f a = b} (α : Π a, p₁ a = p₂ a) {a₁ a₂ : A} (q : a₁ = a₂) :
|
||
cube hrfl hrfl (square_Flr_ap_idp p₁ q) (square_Flr_ap_idp p₂ q)
|
||
(hdeg_square (α _)) (hdeg_square (α _)) :=
|
||
by cases q; esimp[square_Flr_ap_idp]; apply deg3_cube; esimp
|
||
|
||
variables {A B C : Type}
|
||
|
||
definition switch_left [reducible] : join A B → join (join C B) A :=
|
||
begin
|
||
intro x, induction x with a b a b, exact inr a, exact inl (inr b), apply !glue⁻¹,
|
||
end
|
||
|
||
private definition switch_coh_fill_square (a : A) (b : B) (c : C) :=
|
||
square (glue (inl c) a)⁻¹ (ap inl (glue c b))⁻¹ (ap switch_left (glue a b)) idp
|
||
|
||
private definition switch_coh_fill_cube (a : A) (b : B) (c : C)
|
||
(sq : switch_coh_fill_square a b c) :=
|
||
cube (hdeg_square !join.elim_glue) ids
|
||
sq (massage_sq !square_Flr_ap_idp)
|
||
hrfl hrfl
|
||
|
||
private definition switch_coh_fill_type (a : A) (b : B) (c : C) :=
|
||
Σ sq : switch_coh_fill_square a b c, switch_coh_fill_cube a b c sq
|
||
|
||
private definition switch_coh_fill (a : A) (b : B) (c : C)
|
||
: switch_coh_fill_type a b c :=
|
||
by esimp; apply cube_fill101
|
||
|
||
private definition switch_coh (ab : join A B) (c : C) : switch_left ab = inl (inl c) :=
|
||
begin
|
||
induction ab with a b a b, apply !glue⁻¹, apply (ap inl !glue)⁻¹,
|
||
apply eq_pathover, refine _ ⬝hp !ap_constant⁻¹,
|
||
apply !switch_coh_fill.1,
|
||
end
|
||
|
||
protected definition switch [reducible] : join (join A B) C → join (join C B) A :=
|
||
begin
|
||
intro x, induction x with ab c ab c, exact switch_left ab, exact inl (inl c),
|
||
exact switch_coh ab c,
|
||
end
|
||
|
||
private definition switch_inv_left_square (a : A) (b : B) :
|
||
square idp idp (ap (!(@join.switch C) ∘ switch_left) (glue a b)) (ap inl (glue a b)) :=
|
||
begin
|
||
refine hdeg_square !ap_compose ⬝h _,
|
||
refine aps join.switch (hdeg_square !join.elim_glue) ⬝h _, esimp,
|
||
refine hdeg_square !(ap_inv join.switch) ⬝h _,
|
||
refine hrfl⁻¹ʰ⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left,switch_coh],
|
||
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _, esimp,
|
||
refine hrfl⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
|
||
end
|
||
|
||
private definition switch_inv_coh_left (c : C) (a : A) :
|
||
square idp idp (ap !(@join.switch C B) (switch_coh (inl a) c)) (glue (inl a) c) :=
|
||
begin
|
||
refine hrfl ⬝h _,
|
||
refine aps join.switch hrfl ⬝h _, esimp[switch_coh],
|
||
refine hdeg_square !ap_inv ⬝h _,
|
||
refine hrfl⁻¹ʰ⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left],
|
||
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _,
|
||
refine hrfl⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
|
||
end
|
||
|
||
private definition switch_inv_coh_right (c : C) (b : B) :
|
||
square idp idp (ap !(@join.switch _ _ A) (switch_coh (inr b) c)) (glue (inr b) c) :=
|
||
begin
|
||
refine hrfl ⬝h _,
|
||
refine aps join.switch hrfl ⬝h _, esimp[switch_coh],
|
||
refine hdeg_square !ap_inv ⬝h _,
|
||
refine (hdeg_square !ap_compose)⁻¹ʰ⁻¹ᵛ ⬝h _,
|
||
refine hrfl⁻¹ᵛ ⬝h _, esimp[join.switch,switch_left],
|
||
refine (hdeg_square !join.elim_glue)⁻¹ᵛ ⬝h _, apply hdeg_square !inv_inv,
|
||
end
|
||
|
||
private definition switch_inv_left (ab : join A B) :
|
||
!(@join.switch C) (join.switch (inl ab)) = inl ab :=
|
||
begin
|
||
induction ab with a b a b, do 2 reflexivity,
|
||
apply eq_pathover, exact !switch_inv_left_square,
|
||
end
|
||
|
||
section
|
||
variables (a : A) (b : B) (c : C)
|
||
|
||
private definition switch_inv_cube_aux1 {A B C : Type} {b : B} {f : A → B} (h : B → C)
|
||
(g : Π a, f a = b) {x y : A} (p : x = y) :
|
||
cube (hdeg_square (ap_compose h f p)) ids (square_Flr_ap_idp (λ a, ap h (g a)) p)
|
||
(aps h (square_Flr_ap_idp _ _)) hrfl hrfl :=
|
||
by cases p; esimp[square_Flr_ap_idp]; apply deg2_cube; cases (g x); esimp
|
||
|
||
private definition switch_inv_cube_aux2 {A B : Type} {b : B} {f : A → B}
|
||
(g : Π a, f a = b) {x y : A} (p : x = y) {sq : square (g x) (g y) (ap f p) idp}
|
||
(q : apd g p = eq_pathover (sq ⬝hp !ap_constant⁻¹)) : square_Flr_ap_idp _ _ = sq :=
|
||
begin
|
||
cases p, esimp at *, apply concat, apply inverse, apply vdeg_square_idp,
|
||
apply concat, apply ap vdeg_square, exact ap eq_of_pathover_idp q,
|
||
krewrite (is_equiv.right_inv (equiv.to_fun !pathover_idp)),
|
||
exact is_equiv.left_inv (equiv.to_fun (vdeg_square_equiv _ _)) sq,
|
||
end
|
||
|
||
private definition switch_inv_cube (a : A) (b : B) (c : C) :
|
||
cube (switch_inv_left_square a b) ids (square_Flr_ap_idp _ _)
|
||
(square_Flr_ap_idp _ _) (switch_inv_coh_left c a) (switch_inv_coh_right c b) :=
|
||
begin
|
||
esimp [switch_inv_coh_left, switch_inv_coh_right, switch_inv_left_square],
|
||
apply cube_concat2, apply switch_inv_cube_aux1,
|
||
apply cube_concat2, apply cube_transport101, apply inverse,
|
||
apply ap (λ x, aps join.switch x), apply switch_inv_cube_aux2, apply join.rec_glue,
|
||
apply apc, apply (switch_coh_fill a b c).2,
|
||
apply cube_concat2, esimp, apply ap_square_massage,
|
||
apply cube_concat2, apply massage_cube, apply cube_inverse2, apply switch_inv_cube_aux1,
|
||
apply cube_concat2, apply massage_cube, apply square_Flr_ap_idp_cube,
|
||
apply cube_concat2, apply massage_cube, apply cube_transport101,
|
||
apply inverse, apply switch_inv_cube_aux2,
|
||
esimp[switch_coh], apply join.rec_glue, apply (switch_coh_fill c b a).2,
|
||
apply massage_massage,
|
||
end
|
||
|
||
end
|
||
|
||
private definition pathover_of_triangle_cube {A B : Type} {b₀ b₁ : A → B}
|
||
{b : B} {p₀₁ : Π a, b₀ a = b₁ a} {p₀ : Π a, b₀ a = b} {p₁ : Π a, b₁ a = b}
|
||
{x y : A} {q : x = y} {sqx : square (p₀₁ x) idp (p₀ x) (p₁ x)}
|
||
{sqy : square (p₀₁ y) idp (p₀ y) (p₁ y)}
|
||
(c : cube (natural_square _ _) ids (square_Flr_ap_idp p₀ q) (square_Flr_ap_idp p₁ q)
|
||
sqx sqy) :
|
||
sqx =[q] sqy :=
|
||
by cases q; apply pathover_of_eq_tr; apply eq_of_deg12_cube; exact c
|
||
|
||
private definition pathover_of_ap_ap_square {A : Type} {x y : A} {p : x = y}
|
||
(g : B → A) (f : A → B) {u : g (f x) = x} {v : g (f y) = y}
|
||
(sq : square (ap g (ap f p)) p u v) : u =[p] v :=
|
||
by cases p; apply eq_pathover; apply transpose; exact sq
|
||
|
||
private definition natural_square_beta {A B : Type} {f₁ f₂ : A → B}
|
||
(p : Π a, f₁ a = f₂ a) {x y : A} (q : x = y) {sq : square (p x) (p y) (ap f₁ q) (ap f₂ q)}
|
||
(e : apd p q = eq_pathover sq) :
|
||
natural_square p q = sq :=
|
||
begin
|
||
cases q, esimp at *, apply concat, apply inverse, apply vdeg_square_idp,
|
||
apply concat, apply ap vdeg_square, apply ap eq_of_pathover_idp e,
|
||
krewrite (is_equiv.right_inv (equiv.to_fun !pathover_idp)),
|
||
exact is_equiv.left_inv (equiv.to_fun (vdeg_square_equiv _ _)) sq,
|
||
end
|
||
|
||
private definition switch_inv_coh (c : C) (k : join A B) :
|
||
square (switch_inv_left k) idp (ap join.switch (switch_coh k c)) (glue k c) :=
|
||
begin
|
||
induction k with a b a b, apply switch_inv_coh_left, apply switch_inv_coh_right,
|
||
refine pathover_of_triangle_cube _,
|
||
esimp, apply cube_transport011,
|
||
apply inverse, rotate 1, apply switch_inv_cube,
|
||
apply natural_square_beta, apply join.rec_glue,
|
||
end
|
||
|
||
protected definition switch_involutive (x : join (join A B) C) :
|
||
join.switch (join.switch x) = x :=
|
||
begin
|
||
induction x with ab c ab c, apply switch_inv_left, reflexivity,
|
||
apply pathover_of_ap_ap_square join.switch join.switch,
|
||
krewrite join.elim_glue, esimp,
|
||
apply transpose, exact !switch_inv_coh,
|
||
end
|
||
|
||
end join_switch
|
||
|
||
definition join_switch_equiv (A B C : Type) : join (join A B) C ≃ join (join C B) A :=
|
||
by apply equiv.MK; do 2 apply join.switch_involutive
|
||
|
||
definition join_assoc (A B C : Type) : join (join A B) C ≃ join A (join B C) :=
|
||
calc join (join A B) C ≃ join (join C B) A : join_switch_equiv
|
||
... ≃ join A (join C B) : join_symm
|
||
... ≃ join A (join B C) : join_equiv_join erfl (join_symm C B)
|
||
|
||
definition ap_join_assoc_inv_glue_inl {A B : Type} (C : Type) (a : A) (b : B)
|
||
: ap (to_inv (join_assoc A B C)) (glue a (inl b)) = ap inl (glue a b) :=
|
||
begin
|
||
unfold join_assoc, rewrite ap_compose, krewrite join.elim_glue,
|
||
rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue,
|
||
unfold switch_coh, unfold join_symm, unfold join_swap, esimp, rewrite inv_inv
|
||
end
|
||
|
||
protected definition ap_assoc_inv_glue_inr {A C : Type} (B : Type) (a : A) (c : C)
|
||
: ap (to_inv (join_assoc A B C)) (glue a (inr c)) = glue (inl a) c :=
|
||
begin
|
||
unfold join_assoc, rewrite ap_compose, krewrite join.elim_glue,
|
||
rewrite ap_compose, krewrite join.elim_glue, rewrite ap_inv, krewrite join.elim_glue,
|
||
unfold switch_coh, unfold join_symm, unfold join_swap, esimp, rewrite inv_inv
|
||
end
|
||
|
||
end join
|
||
|
||
namespace join
|
||
|
||
open sphere sphere.ops
|
||
|
||
definition join_susp (A B : Type) : join (susp A) B ≃ susp (join A B) :=
|
||
calc join (susp A) B
|
||
≃ join (join bool A) B
|
||
: join_equiv_join (join_bool A)⁻¹ᵉ erfl
|
||
... ≃ join bool (join A B)
|
||
: join_assoc
|
||
... ≃ susp (join A B)
|
||
: join_bool (join A B)
|
||
|
||
definition join_sphere (n m : ℕ) : join (S n) (S m) ≃ S (n+m+1) :=
|
||
begin
|
||
refine join_symm (S n) (S m) ⬝e _,
|
||
induction m with m IH,
|
||
{ exact join_bool (S n) },
|
||
{ calc join (S (m+1)) (S n)
|
||
≃ susp (join (S m) (S n))
|
||
: join_susp (S m) (S n)
|
||
... ≃ sphere (n+m+2)
|
||
: susp.equiv IH }
|
||
end
|
||
|
||
end join
|