lean2/library/algebra/group_bigops.lean
Jeremy Avigad 4a36f843f7 refactor(library/algebra/group_power,library/*): change definition of pow
I changed the definition of pow so that a^(succ n) reduces to a * a^n rather than a^n * a.

This has the nice effect that on nat and int, where multiplication is defined by recursion on the right,
a^1 reduces to a, and a^2 reduces to a * a.

The change was a pain in the neck, and in retrospect maybe not worth it, but oh, well.
2015-08-14 18:49:57 -07:00

236 lines
8.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
Finite products on a monoid, and finite sums on an additive monoid.
We have to be careful with dependencies. This theory imports files from finset and list, which
import basic files from nat. Then nat imports this file to instantiate finite products and sums.
Bigops based on finsets go in the namespace algebra.finset. There are also versions based on sets,
defined in group_set_bigops.lean.
-/
import .group .group_power data.list.basic data.list.perm data.finset.basic
open algebra function binary quot subtype list finset
namespace algebra
variables {A B : Type}
variable [deceqA : decidable_eq A]
/- Prodl: product indexed by a list -/
section monoid
variable [mB : monoid B]
include mB
definition mulf (f : A → B) : B → A → B :=
λ b a, b * f a
definition Prodl (l : list A) (f : A → B) : B :=
list.foldl (mulf f) 1 l
-- ∏ x ← l, f x
notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r
private theorem foldl_const (f : A → B) :
∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l
| [] b := by rewrite [*foldl_nil, mul_one]
| (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf,
one_mul, mul.assoc]
theorem Prodl_nil (f : A → B) : Prodl [] f = 1 := rfl
theorem Prodl_cons (f : A → B) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f :=
by rewrite [↑Prodl, foldl_cons, foldl_const, ↑mulf, one_mul]
theorem Prodl_append :
∀ (l₁ l₂ : list A) (f : A → B), Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f
| [] l₂ f := by rewrite [append_nil_left, Prodl_nil, one_mul]
| (a::l) l₂ f := by rewrite [append_cons, *Prodl_cons, Prodl_append, mul.assoc]
section deceqA
include deceqA
theorem Prodl_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l →
Prodl (insert a l) f = Prodl l f :=
assume ainl, by rewrite [insert_eq_of_mem ainl]
theorem Prodl_insert_of_not_mem (f : A → B) {a : A} {l : list A} :
a ∉ l → Prodl (insert a l) f = f a * Prodl l f :=
assume nainl, by rewrite [insert_eq_of_not_mem nainl, Prodl_cons]
theorem Prodl_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f :=
by rewrite [union_eq_append d, Prodl_append]
end deceqA
theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B)
| [] := rfl
| (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one]
lemma Prodl_singleton {a : A} {f : A → B} : Prodl [a] f = f a :=
!one_mul
lemma Prodl_map {f : A → B} :
∀ {l : list A}, Prodl l f = Prodl (map f l) id
| nil := by rewrite [map_nil]
| (a::l) := begin rewrite [map_cons, Prodl_cons f, Prodl_cons id (f a), Prodl_map] end
open nat
lemma Prodl_eq_pow_of_const {f : A → B} :
∀ {l : list A} b, (∀ a, a ∈ l → f a = b) → Prodl l f = b ^ length l
| nil := take b, assume Pconst, by rewrite [length_nil, {b^0}algebra.pow_zero]
| (a::l) := take b, assume Pconst,
assert Pconstl : ∀ a', a' ∈ l → f a' = b,
from take a' Pa'in, Pconst a' (mem_cons_of_mem a Pa'in),
by rewrite [Prodl_cons f, Pconst a !mem_cons, Prodl_eq_pow_of_const b Pconstl, length_cons, add_one, pow_succ b]
end monoid
section comm_monoid
variable [cmB : comm_monoid B]
include cmB
theorem Prodl_mul (l : list A) (f g : A → B) : Prodl l (λx, f x * g x) = Prodl l f * Prodl l g :=
list.induction_on l
(by rewrite [*Prodl_nil, mul_one])
(take a l,
assume IH,
by rewrite [*Prodl_cons, IH, *mul.assoc, mul.left_comm (Prodl l f)])
end comm_monoid
/- Prod: product indexed by a finset -/
namespace finset
variable [cmB : comm_monoid B]
include cmB
theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) :=
right_commutative_compose_right (@has_mul.mul B cmB) f (@mul.right_comm B cmB)
theorem Prodl_eq_Prodl_of_perm (f : A → B) {l₁ l₂ : list A} :
perm l₁ l₂ → Prodl l₁ f = Prodl l₂ f :=
λ p, perm.foldl_eq_of_perm (mulf_rcomm f) p 1
definition Prod (s : finset A) (f : A → B) : B :=
quot.lift_on s
(λ l, Prodl (elt_of l) f)
(λ l₁ l₂ p, Prodl_eq_Prodl_of_perm f p)
-- ∏ x ∈ s, f x
notation `∏` binders `∈` s, r:(scoped f, prod s f) := r
theorem Prod_empty (f : A → B) : Prod ∅ f = 1 :=
Prodl_nil f
theorem Prod_mul (s : finset A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
quot.induction_on s (take u, !Prodl_mul)
section deceqA
include deceqA
theorem Prod_insert_of_mem (f : A → B) {a : A} {s : finset A} :
a ∈ s → Prod (insert a s) f = Prod s f :=
quot.induction_on s
(λ l ainl, Prodl_insert_of_mem f ainl)
theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} :
a ∉ s → Prod (insert a s) f = f a * Prod s f :=
quot.induction_on s
(λ l nainl, Prodl_insert_of_not_mem f nainl)
theorem Prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f :=
have H1 : disjoint s₁ s₂ → Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f, from
quot.induction_on₂ s₁ s₂
(λ l₁ l₂ d, Prodl_union f d),
H1 (disjoint_of_inter_eq_empty disj)
theorem Prod_ext {s : finset A} {f g : A → B} :
(∀{x}, x ∈ s → f x = g x) → Prod s f = Prod s g :=
finset.induction_on s
(assume H, rfl)
(take x s', assume H1 : x ∉ s',
assume IH : (∀ {x : A}, x ∈ s' → f x = g x) → Prod s' f = Prod s' g,
assume H2 : ∀{y}, y ∈ insert x s' → f y = g y,
assert H3 : ∀y, y ∈ s' → f y = g y, from
take y, assume H', H2 (mem_insert_of_mem _ H'),
assert H4 : f x = g x, from H2 !mem_insert,
by rewrite [Prod_insert_of_not_mem f H1, Prod_insert_of_not_mem g H1, IH H3, H4])
end deceqA
theorem Prod_one (s : finset A) : Prod s (λ x, 1) = (1:B) :=
quot.induction_on s (take u, !Prodl_one)
end finset
section add_monoid
variable [amB : add_monoid B]
include amB
local attribute add_monoid.to_monoid [trans-instance]
definition Suml (l : list A) (f : A → B) : B := Prodl l f
-- ∑ x ← l, f x
notation `∑` binders `←` l, r:(scoped f, Suml l f) := r
theorem Suml_nil (f : A → B) : Suml [] f = 0 := Prodl_nil f
theorem Suml_cons (f : A → B) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f :=
Prodl_cons f a l
theorem Suml_append (l₁ l₂ : list A) (f : A → B) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f :=
Prodl_append l₁ l₂ f
section deceqA
include deceqA
theorem Suml_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) :
Suml (insert a l) f = Suml l f := Prodl_insert_of_mem f H
theorem Suml_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) :
Suml (insert a l) f = f a + Suml l f := Prodl_insert_of_not_mem f H
theorem Suml_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := Prodl_union f d
end deceqA
theorem Suml_zero (l : list A) : Suml l (λ x, 0) = (0:B) := Prodl_one l
end add_monoid
section add_comm_monoid
variable [acmB : add_comm_monoid B]
include acmB
local attribute add_comm_monoid.to_comm_monoid [trans-instance]
theorem Suml_add (l : list A) (f g : A → B) : Suml l (λx, f x + g x) = Suml l f + Suml l g :=
Prodl_mul l f g
end add_comm_monoid
/- Sum -/
namespace finset
variable [acmB : add_comm_monoid B]
include acmB
local attribute add_comm_monoid.to_comm_monoid [trans-instance]
definition Sum (s : finset A) (f : A → B) : B := Prod s f
-- ∑ x ∈ s, f x
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f
theorem Sum_add (s : finset A) (f g : A → B) :
Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g
section deceqA
include deceqA
theorem Sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H
theorem Sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj
theorem Sum_ext {s : finset A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := Prod_ext H
end deceqA
theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = (0:B) := Prod_one s
end finset
end algebra