lean2/library/data/finset/to_set.lean
2015-08-08 04:20:17 -07:00

97 lines
3.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Interactions between finset and set.
-/
import data.finset.comb data.set.function
open nat eq.ops set
namespace finset
variable {A : Type}
variable [deceq : decidable_eq A]
definition to_set [coercion] (s : finset A) : set A := λx, x ∈ s
abbreviation ts := @to_set A
variables (s t : finset A) (x y : A)
theorem mem_eq_mem_to_set : x ∈ s = (x ∈ ts s) := rfl
definition to_set.inj {s₁ s₂ : finset A} : to_set s₁ = to_set s₂ → s₁ = s₂ :=
λ h, ext (λ a, iff.of_eq (calc
(a ∈ s₁) = (a ∈ ts s₁) : mem_eq_mem_to_set
... = (a ∈ ts s₂) : h
... = (a ∈ s₂) : mem_eq_mem_to_set))
/- operations -/
theorem mem_to_set_empty : (x ∈ ts ∅) = (x ∈ ∅) := rfl
theorem to_set_empty : ts ∅ = (@set.empty A) := rfl
theorem mem_to_set_univ [h : fintype A] : (x ∈ ts univ) = (x ∈ set.univ) :=
propext (iff.intro (assume H, trivial) (assume H, !mem_univ))
theorem to_set_univ [h : fintype A] : ts univ = (set.univ : set A) := funext (λ x, !mem_to_set_univ)
theorem mem_to_set_upto (x n : ) : x ∈ ts (upto n) = (x ∈ {a | a < n}) := !mem_upto_eq
theorem to_set_upto (n : ) : ts (upto n) = {a | a < n} := funext (λ x, !mem_to_set_upto)
include deceq
theorem mem_to_set_insert : x ∈ insert y s = (x ∈ set.insert y s) := !mem_insert_eq
theorem to_set_insert : insert y s = set.insert y s := funext (λ x, !mem_to_set_insert)
theorem mem_to_set_union : x ∈ s t = (x ∈ ts s ts t) := !mem_union_eq
theorem to_set_union : ts (s t) = ts s ts t := funext (λ x, !mem_to_set_union)
theorem mem_to_set_inter : x ∈ s ∩ t = (x ∈ ts s ∩ ts t) := !mem_inter_eq
theorem to_set_inter : ts (s ∩ t) = ts s ∩ ts t := funext (λ x, !mem_to_set_inter)
theorem mem_to_set_diff : x ∈ s \ t = (x ∈ ts s \ ts t) := !mem_diff_eq
theorem to_set_diff : ts (s \ t) = ts s \ ts t := funext (λ x, !mem_to_set_diff)
theorem mem_to_set_filter (p : A → Prop) [h : decidable_pred p] : x ∈ filter p s = (x ∈ set.filter p s) :=
!finset.mem_filter_eq
theorem to_set_filter (p : A → Prop) [h : decidable_pred p] : filter p s = set.filter p s :=
funext (λ x, !mem_to_set_filter)
theorem mem_to_set_image {B : Type} [h : decidable_eq B] (f : A → B) {s : finset A} {y : B} :
y ∈ image f s = (y ∈ set.image f s) := !mem_image_eq
theorem to_set_image {B : Type} [h : decidable_eq B] (f : A → B) (s : finset A) :
image f s = set.image f s := funext (λ x, !mem_to_set_image)
/- relations -/
definition decidable_mem_to_set [instance] (x : A) (s : finset A) : decidable (x ∈ ts s) :=
decidable_of_decidable_of_eq _ !mem_eq_mem_to_set
theorem eq_of_to_set_eq_to_set {s t : finset A} (H : to_set s = to_set t) : s = t :=
ext (take x, by rewrite [mem_eq_mem_to_set s, H])
theorem eq_eq_to_set_eq : (s = t) = (ts s = ts t) :=
propext (iff.intro (assume H, H ▸ rfl) !eq_of_to_set_eq_to_set)
definition decidable_to_set_eq [instance] (s t : finset A) : decidable (ts s = ts t) :=
decidable_of_decidable_of_eq _ !eq_eq_to_set_eq
theorem subset_eq_to_set_subset (s t : finset A) : (s ⊆ t) = (ts s ⊆ ts t) :=
propext (iff.intro
(assume H, take x xs, mem_of_subset_of_mem H xs)
(assume H, subset_of_forall H))
definition decidable_to_set_subset (s t : finset A) : decidable (ts s ⊆ ts t) :=
decidable_of_decidable_of_eq _ !subset_eq_to_set_subset
/- bounded quantifiers -/
definition decidable_bounded_forall (s : finset A) (p : A → Prop) [h : decidable_pred p] :
decidable (∀₀ x ∈ ts s, p x) :=
decidable_of_decidable_of_iff _ !all_iff_forall
definition decidable_bounded_exists (s : finset A) (p : A → Prop) [h : decidable_pred p] :
decidable (∃₀ x ∈ ts s, p x) :=
decidable_of_decidable_of_iff _ !any_iff_exists
end finset