lean2/library/logic/connectives.lean

182 lines
5.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.connectives
Authors: Jeremy Avigad, Leonardo de Moura
The propositional connectives. See also init.datatypes and init.logic.
-/
variables {a b c d : Prop}
/- implies -/
definition imp (a b : Prop) : Prop := a → b
theorem mt (H1 : a → b) (H2 : ¬b) : ¬a :=
assume Ha : a, absurd (H1 Ha) H2
/- false -/
theorem false.elim {c : Prop} (H : false) : c :=
false.rec c H
/- not -/
theorem not.elim (H1 : ¬a) (H2 : a) : false := H1 H2
theorem not.intro (H : a → false) : ¬a := H
theorem not_not_intro (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna
theorem not_not_of_not_implies (H : ¬(a → b)) : ¬¬a :=
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
theorem not_of_not_implies (H : ¬(a → b)) : ¬b :=
assume Hb : b, absurd (assume Ha : a, Hb) H
theorem not_not_em : ¬¬(a ¬a) :=
assume not_em : ¬(a ¬a),
have Hnp : ¬a, from
assume Hp : a, absurd (or.inl Hp) not_em,
absurd (or.inr Hnp) not_em
/- and -/
definition not_and_of_not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
assume H : a ∧ b, absurd (and.elim_left H) Hna
definition not_and_of_not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
assume H : a ∧ b, absurd (and.elim_right H) Hnb
theorem and.swap (H : a ∧ b) : b ∧ a :=
and.intro (and.elim_right H) (and.elim_left H)
theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
and.elim H₁ (assume Ha : a, assume Hb : b, and.intro (H₂ Ha) (H₃ Hb))
theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
and.elim H₁ (assume Ha : a, assume Hc : c, and.intro (H Ha) Hc)
theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
and.elim H₁ (assume Hc : c, assume Ha : a, and.intro Hc (H Ha))
theorem and.comm : a ∧ b ↔ b ∧ a :=
iff.intro (λH, and.swap H) (λH, and.swap H)
theorem and.assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
iff.intro
(assume H, and.intro
(and.elim_left (and.elim_left H))
(and.intro (and.elim_right (and.elim_left H)) (and.elim_right H)))
(assume H, and.intro
(and.intro (and.elim_left H) (and.elim_left (and.elim_right H)))
(and.elim_right (and.elim_right H)))
/- or -/
definition not_or (Hna : ¬a) (Hnb : ¬b) : ¬(a b) :=
assume H : a b, or.rec_on H
(assume Ha, absurd Ha Hna)
(assume Hb, absurd Hb Hnb)
theorem or_of_or_of_imp_of_imp (H₁ : a b) (H₂ : a → c) (H₃ : b → d) : c d :=
or.elim H₁
(assume Ha : a, or.inl (H₂ Ha))
(assume Hb : b, or.inr (H₃ Hb))
theorem or_of_or_of_imp_left (H₁ : a c) (H : a → b) : b c :=
or.elim H₁
(assume H₂ : a, or.inl (H H₂))
(assume H₂ : c, or.inr H₂)
theorem or_of_or_of_imp_right (H₁ : c a) (H : a → b) : c b :=
or.elim H₁
(assume H₂ : c, or.inl H₂)
(assume H₂ : a, or.inr (H H₂))
theorem or.elim3 (H : a b c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
or.elim H Ha (assume H₂, or.elim H₂ Hb Hc)
theorem or_resolve_right (H₁ : a b) (H₂ : ¬a) : b :=
or.elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb)
theorem or_resolve_left (H₁ : a b) (H₂ : ¬b) : a :=
or.elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂)
theorem or.swap (H : a b) : b a :=
or.elim H (assume Ha, or.inr Ha) (assume Hb, or.inl Hb)
theorem or.comm : a b ↔ b a :=
iff.intro (λH, or.swap H) (λH, or.swap H)
theorem or.assoc : (a b) c ↔ a (b c) :=
iff.intro
(assume H, or.elim H
(assume H₁, or.elim H₁
(assume Ha, or.inl Ha)
(assume Hb, or.inr (or.inl Hb)))
(assume Hc, or.inr (or.inr Hc)))
(assume H, or.elim H
(assume Ha, (or.inl (or.inl Ha)))
(assume H₁, or.elim H₁
(assume Hb, or.inl (or.inr Hb))
(assume Hc, or.inr Hc)))
/- iff -/
definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
!eq.refl
/- exists_unique -/
definition exists_unique {A : Type} (p : A → Prop) :=
∃x, p x ∧ ∀y, p y → y = x
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
theorem exists_unique.intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) :
∃!x, p x :=
exists.intro w (and.intro H1 H2)
theorem exists_unique.elim {A : Type} {p : A → Prop} {b : Prop}
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
obtain w Hw, from H2,
H1 w (and.elim_left Hw) (and.elim_right Hw)
/- if-then-else -/
section
open eq.ops
variables {A : Type} {c₁ c₂ : Prop}
definition if_true (t e : A) : (if true then t else e) = t :=
if_pos trivial
definition if_false (t e : A) : (if false then t else e) = e :=
if_neg not_false
theorem if_congr_cond [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) (t e : A) :
(if c₁ then t else e) = (if c₂ then t else e) :=
decidable.rec_on H₁
(λ Hc₁ : c₁, decidable.rec_on H₂
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
theorem if_congr_aux [H₁ : decidable c₁] [H₂ : decidable c₂] {t₁ t₂ e₁ e₂ : A}
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
Ht ▸ He ▸ (if_congr_cond Hc t₁ e₁)
theorem if_congr [H₁ : decidable c₁] {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂)
(He : e₁ = e₂) :
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable_of_decidable_of_iff H₁ Hc) A t₂ e₂) :=
have H2 [visible] : decidable c₂, from (decidable_of_decidable_of_iff H₁ Hc),
if_congr_aux Hc Ht He
end