lean2/library/init/logic.lean
2015-04-07 07:46:11 -07:00

527 lines
16 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.logic
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
-/
prelude
import init.datatypes init.reserved_notation
/- implication -/
definition trivial := true.intro
definition not (a : Prop) := a → false
prefix `¬` := not
definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b :=
false.rec b (H2 H1)
/- not -/
theorem not_false : ¬false :=
assume H : false, H
definition non_contradictory (a : Prop) : Prop := ¬¬a
theorem non_contradictory_intro {a : Prop} (Ha : a) : ¬¬a :=
assume Hna : ¬a, absurd Ha Hna
/- eq -/
notation a = b := eq a b
definition rfl {A : Type} {a : A} := eq.refl a
-- proof irrelevance is built in
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
rfl
namespace eq
variables {A : Type}
variables {a b c a': A}
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
eq.rec H₂ H₁
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
subst H₂ H₁
definition symm (H : a = b) : b = a :=
eq.rec (refl a) H
namespace ops
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
notation H1 ⬝ H2 := trans H1 H2
notation H1 ▸ H2 := subst H1 H2
end ops
end eq
section
variables {A : Type} {a b c: A}
open eq.ops
definition trans_rel_left (R : A → A → Prop) (H₁ : R a b) (H₂ : b = c) : R a c :=
H₂ ▸ H₁
definition trans_rel_right (R : A → A → Prop) (H₁ : a = b) (H₂ : R b c) : R a c :=
H₁⁻¹ ▸ H₂
end
section
variable {p : Prop}
open eq.ops
theorem of_eq_true (H : p = true) : p :=
H⁻¹ ▸ trivial
theorem not_of_eq_false (H : p = false) : ¬p :=
assume Hp, H ▸ Hp
end
calc_subst eq.subst
calc_refl eq.refl
calc_trans eq.trans
calc_symm eq.symm
/- ne -/
definition ne {A : Type} (a b : A) := ¬(a = b)
notation a ≠ b := ne a b
namespace ne
open eq.ops
variable {A : Type}
variables {a b : A}
theorem intro : (a = b → false) → a ≠ b :=
assume H, H
theorem elim : a ≠ b → a = b → false :=
assume H₁ H₂, H₁ H₂
theorem irrefl : a ≠ a → false :=
assume H, H rfl
theorem symm : a ≠ b → b ≠ a :=
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
end ne
section
open eq.ops
variables {A : Type} {a b c : A}
theorem false.of_ne : a ≠ a → false :=
assume H, H rfl
end
infixl `==`:50 := heq
namespace heq
universe variable u
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
definition to_eq (H : a == a') : a = a' :=
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
λ Ht, eq.refl (eq.rec_on Ht a),
heq.rec_on H H₁ (eq.refl A)
definition elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b :=
eq.rec_on (to_eq H₁) H₂
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
heq.rec_on H₁ H₂
theorem symm (H : a == b) : b == a :=
heq.rec_on H (refl a)
theorem of_eq (H : a = a') : a == a' :=
eq.subst H (refl a)
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
subst H₂ H₁
theorem of_heq_of_eq (H₁ : a == b) (H₂ : b = b') : a == b' :=
trans H₁ (of_eq H₂)
theorem of_eq_of_heq (H₁ : a = a') (H₂ : a' == b) : a == b :=
trans (of_eq H₁) H₂
end heq
theorem of_heq_true {a : Prop} (H : a == true) : a :=
of_eq_true (heq.to_eq H)
calc_trans heq.trans
calc_trans heq.of_heq_of_eq
calc_trans heq.of_eq_of_heq
calc_symm heq.symm
/- and -/
notation a /\ b := and a b
notation a ∧ b := and a b
variables {a b c d : Prop}
theorem and.elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
and.rec H₂ H₁
/- or -/
notation a `\/` b := or a b
notation a b := or a b
namespace or
theorem elim (H₁ : a b) (H₂ : a → c) (H₃ : b → c) : c :=
or.rec H₂ H₃ H₁
end or
theorem non_contradictory_em (a : Prop) : ¬¬(a ¬a) :=
assume not_em : ¬(a ¬a),
have neg_a : ¬a, from
assume pos_a : a, absurd (or.inl pos_a) not_em,
absurd (or.inr neg_a) not_em
/- iff -/
definition iff (a b : Prop) := (a → b) ∧ (b → a)
notation a <-> b := iff a b
notation a ↔ b := iff a b
namespace iff
definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
and.intro H₁ H₂
definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
and.rec H₁ H₂
definition elim_left (H : a ↔ b) : a → b :=
elim (assume H₁ H₂, H₁) H
definition mp := @elim_left
definition elim_right (H : a ↔ b) : b → a :=
elim (assume H₁ H₂, H₂) H
definition mp' := @elim_right
definition refl (a : Prop) : a ↔ a :=
intro (assume H, H) (assume H, H)
definition rfl {a : Prop} : a ↔ a :=
refl a
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
intro
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
theorem symm (H : a ↔ b) : b ↔ a :=
intro
(assume Hb, elim_right H Hb)
(assume Ha, elim_left H Ha)
open eq.ops
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
end iff
definition not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b :=
iff.intro
(assume (Hna : ¬ a) (Hb : b), absurd (iff.elim_right H₁ Hb) Hna)
(assume (Hnb : ¬ b) (Ha : a), absurd (iff.elim_left H₁ Ha) Hnb)
theorem of_iff_true (H : a ↔ true) : a :=
iff.mp (iff.symm H) trivial
theorem not_of_iff_false (H : a ↔ false) : ¬a :=
assume Ha : a, iff.mp H Ha
theorem iff_true_intro (H : a) : a ↔ true :=
iff.intro
(λ Hl, trivial)
(λ Hr, H)
theorem iff_false_intro (H : ¬a) : a ↔ false :=
iff.intro
(λ Hl, absurd Hl H)
(λ Hr, false.rec _ Hr)
theorem not_non_contradictory_iff_absurd (a : Prop) : ¬¬¬a ↔ ¬a :=
iff.intro
(assume Hl : ¬¬¬a,
assume Ha : a, absurd (non_contradictory_intro Ha) Hl)
(assume Hr : ¬a,
assume Hnna : ¬¬a, absurd Hr Hnna)
calc_refl iff.refl
calc_trans iff.trans
inductive Exists {A : Type} (P : A → Prop) : Prop :=
intro : ∀ (a : A), P a → Exists P
definition exists.intro := @Exists.intro
notation `exists` binders `,` r:(scoped P, Exists P) := r
notation `∃` binders `,` r:(scoped P, Exists P) := r
theorem exists.elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
Exists.rec H2 H1
/- decidable -/
inductive decidable [class] (p : Prop) : Type :=
| inl : p → decidable p
| inr : ¬p → decidable p
definition decidable_true [instance] : decidable true :=
decidable.inl trivial
definition decidable_false [instance] : decidable false :=
decidable.inr not_false
namespace decidable
variables {p q : Prop}
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
: decidable.rec_on H H1 H2 :=
decidable.rec_on H (λh, H4) (λh, !false.rec (h H3))
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
: decidable.rec_on H H1 H2 :=
decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
theorem em (p : Prop) [H : decidable p] : p ¬p :=
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
by_cases
(assume H1 : p, H1)
(assume H1 : ¬p, false.rec _ (H H1))
end decidable
section
variables {p q : Prop}
open decidable
definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q :=
decidable.rec_on Hp
(assume Hp : p, inl (iff.elim_left H Hp))
(assume Hnp : ¬p, inr (iff.elim_left (not_iff_not_of_iff H) Hnp))
definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q :=
decidable_of_decidable_of_iff Hp (iff.of_eq H)
end
section
variables {p q : Prop}
open decidable (rec_on inl inr)
definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) :=
rec_on Hp
(assume Hp : p, rec_on Hq
(assume Hq : q, inl (and.intro Hp Hq))
(assume Hnq : ¬q, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hq Hnq))))
(assume Hnp : ¬p, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hp Hnp)))
definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p q) :=
rec_on Hp
(assume Hp : p, inl (or.inl Hp))
(assume Hnp : ¬p, rec_on Hq
(assume Hq : q, inl (or.inr Hq))
(assume Hnq : ¬q, inr (assume H : p q, or.elim H (assume Hp, absurd Hp Hnp) (assume Hq, absurd Hq Hnq))))
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
rec_on Hp
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
(assume Hnp, inl Hnp)
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
rec_on Hp
(assume Hp : p, rec_on Hq
(assume Hq : q, inl (assume H, Hq))
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
show decidable ((p → q) ∧ (q → p)), from _
end
definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : Π (a b : A), decidable (a ≠ b) :=
show Π x y : A, decidable (x = y → false), from _
namespace bool
definition ff_ne_tt : ff = tt → false
| [none]
end bool
open bool
definition is_dec_eq {A : Type} (p : A → A → bool) : Prop := ∀ ⦃x y : A⦄, p x y = tt → x = y
definition is_dec_refl {A : Type} (p : A → A → bool) : Prop := ∀x, p x x = tt
open decidable
protected definition bool.has_decidable_eq [instance] : ∀a b : bool, decidable (a = b)
| ff ff := inl rfl
| ff tt := inr ff_ne_tt
| tt ff := inr (ne.symm ff_ne_tt)
| tt tt := inl rfl
definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A :=
take x y : A, by_cases
(assume Hp : p x y = tt, inl (H₁ Hp))
(assume Hn : ¬ p x y = tt, inr (assume Hxy : x = y, absurd (H₂ y) (eq.rec_on Hxy Hn)))
theorem decidable_eq_inl_refl {A : Type} [H : decidable_eq A] (a : A) : H a a = inl (eq.refl a) :=
match H a a with
| inl e := rfl
| inr n := absurd rfl n
end
theorem decidable_eq_inr_neg {A : Type} [H : decidable_eq A] {a b : A} : Π n : a ≠ b, H a b = inr n :=
assume n,
match H a b with
| inl e := absurd e n
| inr n₁ := proof_irrel n n₁ ▸ rfl
end
/- inhabited -/
inductive inhabited [class] (A : Type) : Type :=
mk : A → inhabited A
protected definition inhabited.value {A : Type} (h : inhabited A) : A :=
inhabited.rec (λa, a) h
protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
inhabited.rec H2 H1
definition default (A : Type) [H : inhabited A] : A :=
inhabited.rec (λa, a) H
opaque definition arbitrary (A : Type) [H : inhabited A] : A :=
inhabited.rec (λa, a) H
definition Prop.is_inhabited [instance] : inhabited Prop :=
inhabited.mk true
definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
inhabited.rec_on H (λb, inhabited.mk (λa, b))
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
inhabited (Πx, B x) :=
inhabited.mk (λa, inhabited.rec_on (H a) (λb, b))
protected definition bool.is_inhabited [instance] : inhabited bool :=
inhabited.mk ff
inductive nonempty [class] (A : Type) : Prop :=
intro : A → nonempty A
protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
nonempty.rec H2 H1
theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A :=
nonempty.intro (default A)
/- subsingleton -/
inductive subsingleton [class] (A : Type) : Prop :=
intro : (∀ a b : A, a = b) → subsingleton A
protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b :=
subsingleton.rec (fun p, p) H
definition subsingleton_prop [instance] (p : Prop) : subsingleton p :=
subsingleton.intro (λa b, !proof_irrel)
definition subsingleton_decidable [instance] (p : Prop) : subsingleton (decidable p) :=
subsingleton.intro (λ d₁,
match d₁ with
| inl t₁ := (λ d₂,
match d₂ with
| inl t₂ := eq.rec_on (proof_irrel t₁ t₂) rfl
| inr f₂ := absurd t₁ f₂
end)
| inr f₁ := (λ d₂,
match d₂ with
| inl t₂ := absurd t₂ f₁
| inr f₂ := eq.rec_on (proof_irrel f₁ f₂) rfl
end)
end)
protected theorem rec_subsingleton {p : Prop} [H : decidable p]
{H1 : p → Type} {H2 : ¬p → Type}
[H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)]
: subsingleton (decidable.rec_on H H1 H2) :=
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
/- if-then-else -/
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
definition if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc)
H
definition if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
decidable.rec
(λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
H
definition if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
decidable.rec
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
H
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
-- to the branches
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
definition dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t Hc :=
decidable.rec
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
(λ Hnc : ¬c, absurd Hc Hnc)
H
definition dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e Hnc :=
decidable.rec
(λ Hc : c, absurd Hc Hnc)
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
H
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
rfl
definition is_true (c : Prop) [H : decidable c] : Prop :=
if c then true else false
definition is_false (c : Prop) [H : decidable c] : Prop :=
if c then false else true
theorem of_is_true {c : Prop} [H₁ : decidable c] (H₂ : is_true c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂))
notation `dec_trivial` := of_is_true trivial
theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c :=
decidable.rec_on H₁ (λ Hc, absurd true.intro (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c :=
decidable.rec_on H₁ (λ Hc, !false.rec (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c :=
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd true.intro (if_neg Hnc ▸ H₂))