7a3aab60c6
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
67 lines
3 KiB
Text
67 lines
3 KiB
Text
Set: pp::colors
|
||
Set: pp::unicode
|
||
Assumed: N
|
||
Assumed: h
|
||
Proved: congrH
|
||
Set: lean::pp::implicit
|
||
variable h : N → N → N
|
||
theorem congrH {a1 a2 b1 b2 : N} (H1 : @eq N a1 b1) (H2 : @eq N a2 b2) : @eq N (h a1 a2) (h b1 b2) :=
|
||
@congr N N (h a1) (h b1) a2 b2 (@congr N (N → N) h h a1 b1 (@refl (N → N → N) h) H1) H2
|
||
Set: lean::pp::implicit
|
||
variable h : N → N → N
|
||
theorem congrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := congr (congr (refl h) H1) H2
|
||
Proved: Example1
|
||
Set: lean::pp::implicit
|
||
theorem Example1 (a b c d : N) (H : @eq N a b ∧ @eq N b c ∨ @eq N a d ∧ @eq N d c) : @eq N (h a b) (h c b) :=
|
||
@or_elim (@eq N a b ∧ @eq N b c)
|
||
(@eq N a d ∧ @eq N d c)
|
||
(@eq N (h a b) (h c b))
|
||
H
|
||
(λ H1 : @eq N a b ∧ @eq N b c,
|
||
@congrH a
|
||
b
|
||
c
|
||
b
|
||
(@trans N a b c (@and_eliml (@eq N a b) (@eq N b c) H1) (@and_elimr (@eq N a b) (@eq N b c) H1))
|
||
(@refl N b))
|
||
(λ H1 : @eq N a d ∧ @eq N d c,
|
||
@congrH a
|
||
b
|
||
c
|
||
b
|
||
(@trans N a d c (@and_eliml (@eq N a d) (@eq N d c) H1) (@and_elimr (@eq N a d) (@eq N d c) H1))
|
||
(@refl N b))
|
||
Proved: Example2
|
||
Set: lean::pp::implicit
|
||
theorem Example2 (a b c d : N) (H : @eq N a b ∧ @eq N b c ∨ @eq N a d ∧ @eq N d c) : @eq N (h a b) (h c b) :=
|
||
@or_elim (@eq N a b ∧ @eq N b c)
|
||
(@eq N a d ∧ @eq N d c)
|
||
(@eq N (h a b) (h c b))
|
||
H
|
||
(λ H1 : @eq N a b ∧ @eq N b c,
|
||
@congrH a
|
||
b
|
||
c
|
||
b
|
||
(@trans N a b c (@and_eliml (@eq N a b) (@eq N b c) H1) (@and_elimr (@eq N a b) (@eq N b c) H1))
|
||
(@refl N b))
|
||
(λ H1 : @eq N a d ∧ @eq N d c,
|
||
@congrH a
|
||
b
|
||
c
|
||
b
|
||
(@trans N a d c (@and_eliml (@eq N a d) (@eq N d c) H1) (@and_elimr (@eq N a d) (@eq N d c) H1))
|
||
(@refl N b))
|
||
Proved: Example3
|
||
Set: lean::pp::implicit
|
||
theorem Example3 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : h a b = h c b :=
|
||
or_elim H
|
||
(λ H1 : a = b ∧ b = e ∧ b = c, congrH (trans (and_eliml H1) (and_elimr (and_elimr H1))) (refl b))
|
||
(λ H1 : a = d ∧ d = c, congrH (trans (and_eliml H1) (and_elimr H1)) (refl b))
|
||
Proved: Example4
|
||
Set: lean::pp::implicit
|
||
theorem Example4 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : h a c = h c a :=
|
||
or_elim H
|
||
(λ H1 : a = b ∧ b = e ∧ b = c,
|
||
let AeqC := trans (and_eliml H1) (and_elimr (and_elimr H1)) in congrH AeqC (symm AeqC))
|
||
(λ H1 : a = d ∧ d = c, let AeqC := trans (and_eliml H1) (and_elimr H1) in congrH AeqC (symm AeqC))
|