153 lines
4.7 KiB
Text
153 lines
4.7 KiB
Text
/-
|
||
Copyright (c) 2015 Joe Hendrix. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Joe Hendrix
|
||
|
||
Basic operations on bitvectors.
|
||
|
||
This is a work-in-progress, and contains additions to other theories.
|
||
-/
|
||
import data.list
|
||
import data.tuple
|
||
|
||
namespace bv
|
||
open bool
|
||
open eq.ops
|
||
open list
|
||
open nat
|
||
open prod
|
||
open subtype
|
||
open tuple
|
||
|
||
definition bv [reducible] (n : ℕ) := tuple bool n
|
||
|
||
-- Create a zero bitvector
|
||
definition bv_zero (n : ℕ) : bv n := replicate n ff
|
||
|
||
-- Create a bitvector with the constant one.
|
||
definition bv_one : Π (n : ℕ), bv n
|
||
| 0 := nil
|
||
| (succ n) := (replicate n ff : bv n) ++ (tt :: nil)
|
||
|
||
definition bv_cong {a b : ℕ} : (a = b) → bv a → bv b
|
||
| c (tag x p) := tag x (c ▸ p)
|
||
|
||
section shift
|
||
|
||
-- shift left
|
||
definition bv_shl {n:ℕ} : bv n → ℕ → bv n
|
||
| x i :=
|
||
if le : i ≤ n then
|
||
let r := dropn i x ++ replicate i ff in
|
||
let eq := calc (n-i) + i = n : nat.sub_add_cancel le in
|
||
bv_cong eq r
|
||
else
|
||
bv_zero n
|
||
|
||
definition fill_shr {n:ℕ} (x : bv n) (i : ℕ) (fill : bool) : bv n :=
|
||
let y := replicate (min n i) fill ++ firstn (n-i) x in
|
||
have min n i + min (n-i) n = n, from if h : i ≤ n then
|
||
by rewrite [min_eq_right h, min_eq_left !sub_le, -nat.add_sub_assoc h,
|
||
nat.add_sub_cancel_left]
|
||
else
|
||
have h : i ≥ n, from le_of_not_ge h,
|
||
by rewrite [min_eq_left h, sub_eq_zero_of_le h, min_eq_left !zero_le],
|
||
bv_cong this y
|
||
|
||
-- unsigned shift right
|
||
definition bv_ushr {n:ℕ} : bv n → ℕ → bv n
|
||
| x i :=
|
||
fill_shr x i ff
|
||
|
||
-- signed shift right
|
||
definition bv_sshr {m:ℕ} : bv (succ m) → ℕ → bv (succ m)
|
||
| x i := head x :: fill_shr (tail x) i (head x)
|
||
end shift
|
||
|
||
section bitwise
|
||
variable { n : ℕ }
|
||
|
||
definition bv_not : bv n → bv n := map bnot
|
||
definition bv_and : bv n → bv n → bv n := map₂ band
|
||
definition bv_or : bv n → bv n → bv n := map₂ bor
|
||
definition bv_xor : bv n → bv n → bv n := map₂ bxor
|
||
|
||
end bitwise
|
||
|
||
section arith
|
||
|
||
variable { n : ℕ }
|
||
|
||
protected definition xor3 (x:bool) (y:bool) (c:bool) := bxor (bxor x y) c
|
||
protected definition carry (x:bool) (y:bool) (c:bool) :=
|
||
x && y || x && c || y && c
|
||
|
||
definition bv_neg : bv n → bv n
|
||
| x :=
|
||
let f := λy c, (y || c, bxor y c) in
|
||
pr₂ (mapAccumR f x ff)
|
||
|
||
-- Add with carry (no overflow)
|
||
definition bv_adc : bv n → bv n → bool → bv (n+1)
|
||
| x y c :=
|
||
let f := λx y c, (bv.carry x y c, bv.xor3 x y c) in
|
||
let z := tuple.mapAccumR₂ f x y c in
|
||
(pr₁ z) :: (pr₂ z)
|
||
|
||
definition bv_add : bv n → bv n → bv n
|
||
| x y := tail (bv_adc x y ff)
|
||
|
||
protected definition borrow (x:bool) (y:bool) (b:bool) :=
|
||
bnot x && y || bnot x && b || y && b
|
||
|
||
-- Subtract with borrow
|
||
definition bv_sbb : bv n → bv n → bool → bool × bv n
|
||
| x y b :=
|
||
let f := λx y c, (bv.borrow x y c, bv.xor3 x y c) in
|
||
tuple.mapAccumR₂ f x y b
|
||
|
||
definition bv_sub : bv n → bv n → bv n
|
||
| x y := pr₂ (bv_sbb x y ff)
|
||
|
||
definition bv_has_zero [instance] : has_zero (bv n) := has_zero.mk (bv_zero n)
|
||
definition bv_has_one [instance] : has_one (bv n) := has_one.mk (bv_one n)
|
||
definition bv_has_add [instance] : has_add (bv n) := has_add.mk bv_add
|
||
definition bv_has_sub [instance] : has_sub (bv n) := has_sub.mk bv_sub
|
||
definition bv_has_neg [instance] : has_neg (bv n) := has_neg.mk bv_neg
|
||
|
||
definition bv_mul : bv n → bv n → bv n
|
||
| x y :=
|
||
let f := λr b, cond b (r + r + y) (r + r) in
|
||
foldl f 0 (to_list x)
|
||
|
||
definition bv_has_mul [instance] : has_mul (bv n) := has_mul.mk bv_mul
|
||
|
||
definition bv_ult : bv n → bv n → bool := λx y, pr₁ (bv_sbb x y ff)
|
||
definition bv_ugt : bv n → bv n → bool := λx y, bv_ult y x
|
||
definition bv_ule : bv n → bv n → bool := λx y, bnot (bv_ult y x)
|
||
definition bv_uge : bv n → bv n → bool := λx y, bv_ule y x
|
||
|
||
definition bv_slt : bv (succ n) → bv (succ n) → bool := λx y,
|
||
cond (head x)
|
||
(cond (head y)
|
||
(bv_ult (tail x) (tail y)) -- both negative
|
||
tt) -- x is negative and y is not
|
||
(cond (head y)
|
||
ff -- y is negative and x is not
|
||
(bv_ult (tail x) (tail y))) -- both positive
|
||
definition bv_sgt : bv (succ n) → bv (succ n) → bool := λx y, bv_slt y x
|
||
definition bv_sle : bv (succ n) → bv (succ n) → bool := λx y, bnot (bv_slt y x)
|
||
definition bv_sge : bv (succ n) → bv (succ n) → bool := λx y, bv_sle y x
|
||
end arith
|
||
|
||
|
||
section from_bv
|
||
variable {A : Type}
|
||
|
||
-- Convert a bitvector to another number.
|
||
definition from_bv [p : has_add A] [q0 : has_zero A] [q1 : has_one A] {n:nat} (v:bv n) : A :=
|
||
let f := λr b, cond b (r + r + 1) (r + r) in
|
||
foldl f 0 (to_list v)
|
||
end from_bv
|
||
|
||
end bv
|