lean2/library/data/nat/fact.lean

55 lines
1.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Factorial
-/
import data.nat.div
namespace nat
definition fact : nat → nat
| 0 := 1
| (succ n) := (succ n) * fact n
lemma fact_zero : fact 0 = 1 :=
rfl
lemma fact_one : fact 1 = 1 :=
rfl
lemma fact_succ (n) : fact (succ n) = succ n * fact n :=
rfl
lemma fact_pos : ∀ n, fact n > 0
| 0 := zero_lt_one
| (succ n) := mul_pos !succ_pos (fact_pos n)
lemma fact_ne_zero (n : ) : fact n ≠ 0 := ne_of_gt !fact_pos
lemma dvd_fact : ∀ {m n}, m > 0 → m ≤ n → m fact n
| m 0 h₁ h₂ := absurd h₁ (not_lt_of_ge h₂)
| m (succ n) h₁ h₂ :=
begin
rewrite fact_succ,
cases (eq_or_lt_of_le h₂) with he hl,
{subst m, apply dvd_mul_right},
{have aux : m fact n, from dvd_fact h₁ (le_of_lt_succ hl),
apply dvd_mul_of_dvd_right aux}
end
lemma fact_le {m n} : m ≤ n → fact m ≤ fact n :=
begin
induction n with n ih,
{intro h,
have meq0 : m = 0, from eq_zero_of_le_zero h,
subst m},
{intro m_le_succ_n,
cases (eq_or_lt_of_le m_le_succ_n) with h₁ h₂,
{subst m},
{transitivity (fact n),
exact ih (le_of_lt_succ h₂),
rewrite [fact_succ, -one_mul (fact n) at {1}],
exact nat.mul_le_mul (succ_le_succ (zero_le n)) !le.refl}}
end
end nat