lean2/library/data/int/order.lean

440 lines
17 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jeremy Avigad
The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring
and transfer the results.
-/
import .basic algebra.ordered_ring
open nat
open decidable
open int eq.ops
namespace int
private definition nonneg (a : ) : Prop := int.cases_on a (take n, true) (take n, false)
protected definition le (a b : ) : Prop := nonneg (b - a)
definition int_has_le [instance] [priority int.prio]: has_le int :=
has_le.mk int.le
protected definition lt (a b : ) : Prop := (a + 1) ≤ b
definition int_has_lt [instance] [priority int.prio]: has_lt int :=
has_lt.mk int.lt
local attribute nonneg [reducible]
private definition decidable_nonneg [instance] (a : ) : decidable (nonneg a) := int.cases_on a _ _
definition decidable_le [instance] (a b : ) : decidable (a ≤ b) := decidable_nonneg _
definition decidable_lt [instance] (a b : ) : decidable (a < b) := decidable_nonneg _
private theorem nonneg.elim {a : } : nonneg a → ∃n : , a = n :=
int.cases_on a (take n H, exists.intro n rfl) (take n', false.elim)
private theorem nonneg_or_nonneg_neg (a : ) : nonneg a nonneg (-a) :=
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
theorem le.intro {a b : } {n : } (H : a + n = b) : a ≤ b :=
have n = b - a, from eq_add_neg_of_add_eq (begin rewrite [add.comm, H] end), -- !add.comm ▸ H),
show nonneg (b - a), from this ▸ trivial
theorem le.elim {a b : } (H : a ≤ b) : ∃n : , a + n = b :=
obtain (n : ) (H1 : b - a = n), from nonneg.elim H,
exists.intro n (!add.comm ▸ iff.mpr !add_eq_iff_eq_add_neg (H1⁻¹))
protected theorem le_total (a b : ) : a ≤ b b ≤ a :=
or.imp_right
(assume H : nonneg (-(b - a)),
have -(b - a) = a - b, from !neg_sub,
show nonneg (a - b), from this ▸ H)
(nonneg_or_nonneg_neg (b - a))
theorem of_nat_le_of_nat_of_le {m n : } (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
obtain (k : ) (Hk : m + k = n), from nat.le.elim H,
le.intro (Hk ▸ (of_nat_add m k)⁻¹)
theorem le_of_of_nat_le_of_nat {m n : } (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) :=
obtain (k : ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
have m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk),
nat.le.intro this
theorem of_nat_le_of_nat_iff (m n : ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le
theorem lt_add_succ (a : ) (n : ) : a < a + succ n :=
le.intro (show a + 1 + n = a + succ n, from
calc
a + 1 + n = a + (1 + n) : add.assoc
... = a + (n + 1) : by rewrite (int.add_comm 1 n)
... = a + succ n : rfl)
theorem lt.intro {a b : } {n : } (H : a + succ n = b) : a < b :=
H ▸ lt_add_succ a n
theorem lt.elim {a b : } (H : a < b) : ∃n : , a + succ n = b :=
obtain (n : ) (Hn : a + 1 + n = b), from le.elim H,
have a + succ n = b, from
calc
a + succ n = a + 1 + n : by rewrite [add.assoc, int.add_comm 1 n]
... = b : Hn,
exists.intro n this
theorem of_nat_lt_of_nat_iff (n m : ) : of_nat n < of_nat m ↔ n < m :=
calc
of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl
... ↔ of_nat (nat.succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl
... ↔ nat.succ n ≤ m : of_nat_le_of_nat_iff
... ↔ n < m : iff.symm (lt_iff_succ_le _ _)
theorem lt_of_of_nat_lt_of_nat {m n : } (H : of_nat m < of_nat n) : #nat m < n :=
iff.mp !of_nat_lt_of_nat_iff H
theorem of_nat_lt_of_nat_of_lt {m n : } (H : #nat m < n) : of_nat m < of_nat n :=
iff.mpr !of_nat_lt_of_nat_iff H
/- show that the integers form an ordered additive group -/
protected theorem le_refl (a : ) : a ≤ a :=
le.intro (add_zero a)
protected theorem le_trans {a b c : } (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
obtain (n : ) (Hn : a + n = b), from le.elim H1,
obtain (m : ) (Hm : b + m = c), from le.elim H2,
have a + of_nat (n + m) = c, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : {of_nat_add n m}
... = a + n + m : (add.assoc a n m)⁻¹
... = b + m : {Hn}
... = c : Hm,
le.intro this
protected theorem le_antisymm : ∀ {a b : }, a ≤ b → b ≤ a → a = b :=
take a b : , assume (H₁ : a ≤ b) (H₂ : b ≤ a),
obtain (n : ) (Hn : a + n = b), from le.elim H₁,
obtain (m : ) (Hm : b + m = a), from le.elim H₂,
have a + of_nat (n + m) = a + 0, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : by rewrite of_nat_add
... = a + n + m : by rewrite add.assoc
... = b + m : by rewrite Hn
... = a : by rewrite Hm
... = a + 0 : by rewrite add_zero,
have of_nat (n + m) = of_nat 0, from add.left_cancel this,
have n + m = 0, from of_nat.inj this,
assert n = 0, from nat.eq_zero_of_add_eq_zero_right this,
show a = b, from
calc
a = a + 0 : add_zero
... = a + n : by rewrite this
... = b : Hn
protected theorem lt_irrefl (a : ) : ¬ a < a :=
(suppose a < a,
obtain (n : ) (Hn : a + succ n = a), from lt.elim this,
have a + succ n = a + 0, from
Hn ⬝ !add_zero⁻¹,
!succ_ne_zero (of_nat.inj (add.left_cancel this)))
protected theorem ne_of_lt {a b : } (H : a < b) : a ≠ b :=
(suppose a = b, absurd (this ▸ H) (int.lt_irrefl b))
theorem le_of_lt {a b : } (H : a < b) : a ≤ b :=
obtain (n : ) (Hn : a + succ n = b), from lt.elim H,
le.intro Hn
protected theorem lt_iff_le_and_ne (a b : ) : a < b ↔ (a ≤ b ∧ a ≠ b) :=
iff.intro
(assume H, and.intro (le_of_lt H) (int.ne_of_lt H))
(assume H,
have a ≤ b, from and.elim_left H,
have a ≠ b, from and.elim_right H,
obtain (n : ) (Hn : a + n = b), from le.elim `a ≤ b`,
have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)),
obtain (k : ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this,
lt.intro (Hk ▸ Hn))
protected theorem le_iff_lt_or_eq (a b : ) : a ≤ b ↔ (a < b a = b) :=
iff.intro
(assume H,
by_cases
(suppose a = b, or.inr this)
(suppose a ≠ b,
obtain (n : ) (Hn : a + n = b), from le.elim H,
have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)),
obtain (k : ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this,
or.inl (lt.intro (Hk ▸ Hn))))
(assume H,
or.elim H
(assume H1, le_of_lt H1)
(assume H1, H1 ▸ !int.le_refl))
theorem lt_succ (a : ) : a < a + 1 :=
int.le_refl (a + 1)
protected theorem add_le_add_left {a b : } (H : a ≤ b) (c : ) : c + a ≤ c + b :=
obtain (n : ) (Hn : a + n = b), from le.elim H,
have H2 : c + a + n = c + b, from
calc
c + a + n = c + (a + n) : add.assoc c a n
... = c + b : {Hn},
le.intro H2
protected theorem add_lt_add_left {a b : } (H : a < b) (c : ) : c + a < c + b :=
let H' := le_of_lt H in
(iff.mpr (int.lt_iff_le_and_ne _ _)) (and.intro (int.add_le_add_left H' _)
(take Heq, let Heq' := add_left_cancel Heq in
!int.lt_irrefl (Heq' ▸ H)))
protected theorem mul_nonneg {a b : } (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b :=
obtain (n : ) (Hn : 0 + n = a), from le.elim Ha,
obtain (m : ) (Hm : 0 + m = b), from le.elim Hb,
le.intro
(eq.symm
(calc
a * b = (0 + n) * b : by rewrite Hn
... = n * b : by rewrite zero_add
... = n * (0 + m) : by rewrite Hm
... = n * m : by rewrite zero_add
... = 0 + n * m : by rewrite zero_add))
protected theorem mul_pos {a b : } (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b :=
obtain (n : ) (Hn : 0 + nat.succ n = a), from lt.elim Ha,
obtain (m : ) (Hm : 0 + nat.succ m = b), from lt.elim Hb,
lt.intro
(eq.symm
(calc
a * b = (0 + nat.succ n) * b : by rewrite Hn
... = nat.succ n * b : by rewrite zero_add
... = nat.succ n * (0 + nat.succ m) : by rewrite Hm
... = nat.succ n * nat.succ m : by rewrite zero_add
... = of_nat (nat.succ n * nat.succ m) : by rewrite of_nat_mul
... = of_nat (nat.succ n * m + nat.succ n) : by rewrite nat.mul_succ
... = of_nat (nat.succ (nat.succ n * m + n)) : by rewrite nat.add_succ
... = 0 + nat.succ (nat.succ n * m + n) : by rewrite zero_add))
protected theorem zero_lt_one : (0 : ) < 1 := trivial
protected theorem not_le_of_gt {a b : } (H : a < b) : ¬ b ≤ a :=
assume Hba,
let Heq := int.le_antisymm (le_of_lt H) Hba in
!int.lt_irrefl (Heq ▸ H)
protected theorem lt_of_lt_of_le {a b c : } (Hab : a < b) (Hbc : b ≤ c) : a < c :=
let Hab' := le_of_lt Hab in
let Hac := int.le_trans Hab' Hbc in
(iff.mpr !int.lt_iff_le_and_ne) (and.intro Hac
(assume Heq, int.not_le_of_gt (Heq ▸ Hab) Hbc))
protected theorem lt_of_le_of_lt {a b c : } (Hab : a ≤ b) (Hbc : b < c) : a < c :=
let Hbc' := le_of_lt Hbc in
let Hac := int.le_trans Hab Hbc' in
(iff.mpr !int.lt_iff_le_and_ne) (and.intro Hac
(assume Heq, int.not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab))
protected definition linear_ordered_comm_ring [trans_instance] :
linear_ordered_comm_ring int :=
⦃linear_ordered_comm_ring, int.integral_domain,
le := int.le,
le_refl := int.le_refl,
le_trans := @int.le_trans,
le_antisymm := @int.le_antisymm,
lt := int.lt,
le_of_lt := @int.le_of_lt,
lt_irrefl := int.lt_irrefl,
lt_of_lt_of_le := @int.lt_of_lt_of_le,
lt_of_le_of_lt := @int.lt_of_le_of_lt,
add_le_add_left := @int.add_le_add_left,
mul_nonneg := @int.mul_nonneg,
mul_pos := @int.mul_pos,
le_iff_lt_or_eq := int.le_iff_lt_or_eq,
le_total := int.le_total,
zero_ne_one := int.zero_ne_one,
zero_lt_one := int.zero_lt_one,
add_lt_add_left := @int.add_lt_add_left⦄
protected definition decidable_linear_ordered_comm_ring [instance] :
decidable_linear_ordered_comm_ring int :=
⦃decidable_linear_ordered_comm_ring,
int.linear_ordered_comm_ring,
decidable_lt := decidable_lt⦄
/- more facts specific to int -/
theorem of_nat_nonneg (n : ) : 0 ≤ of_nat n := trivial
theorem of_nat_pos {n : } (Hpos : #nat n > 0) : of_nat n > 0 :=
of_nat_lt_of_nat_of_lt Hpos
theorem of_nat_succ_pos (n : nat) : of_nat (nat.succ n) > 0 :=
of_nat_pos !nat.succ_pos
theorem exists_eq_of_nat {a : } (H : 0 ≤ a) : ∃n : , a = of_nat n :=
obtain (n : ) (H1 : 0 + of_nat n = a), from le.elim H,
exists.intro n (!zero_add ▸ (H1⁻¹))
theorem exists_eq_neg_of_nat {a : } (H : a ≤ 0) : ∃n : , a = -(of_nat n) :=
have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
obtain (n : ) (Hn : -a = of_nat n), from exists_eq_of_nat this,
exists.intro n (eq_neg_of_eq_neg (Hn⁻¹))
theorem of_nat_nat_abs_of_nonneg {a : } (H : a ≥ 0) : of_nat (nat_abs a) = a :=
obtain (n : ) (Hn : a = of_nat n), from exists_eq_of_nat H,
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
theorem of_nat_nat_abs_of_nonpos {a : } (H : a ≤ 0) : of_nat (nat_abs a) = -a :=
have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
calc
of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg
... = -a : of_nat_nat_abs_of_nonneg this
theorem of_nat_nat_abs (b : ) : nat_abs b = abs b :=
or.elim (le.total 0 b)
(assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹)
(assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹)
theorem nat_abs_abs (a : ) : nat_abs (abs a) = nat_abs a :=
abs.by_cases rfl !nat_abs_neg
theorem lt_of_add_one_le {a b : } (H : a + 1 ≤ b) : a < b :=
obtain (n : nat) (H1 : a + 1 + n = b), from le.elim H,
have a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1],
lt.intro this
theorem add_one_le_of_lt {a b : } (H : a < b) : a + 1 ≤ b :=
obtain (n : nat) (H1 : a + succ n = b), from lt.elim H,
have a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1],
le.intro this
theorem lt_add_one_of_le {a b : } (H : a ≤ b) : a < b + 1 :=
lt_add_of_le_of_pos H trivial
theorem le_of_lt_add_one {a b : } (H : a < b + 1) : a ≤ b :=
have H1 : a + 1 ≤ b + 1, from add_one_le_of_lt H,
le_of_add_le_add_right H1
theorem sub_one_le_of_lt {a b : } (H : a ≤ b) : a - 1 < b :=
lt_of_add_one_le (begin rewrite sub_add_cancel, exact H end)
theorem lt_of_sub_one_le {a b : } (H : a - 1 < b) : a ≤ b :=
!sub_add_cancel ▸ add_one_le_of_lt H
theorem le_sub_one_of_lt {a b : } (H : a < b) : a ≤ b - 1 :=
le_of_lt_add_one begin rewrite sub_add_cancel, exact H end
theorem lt_of_le_sub_one {a b : } (H : a ≤ b - 1) : a < b :=
!sub_add_cancel ▸ (lt_add_one_of_le H)
theorem sign_of_succ (n : nat) : sign (nat.succ n) = 1 :=
sign_of_pos (of_nat_pos !nat.succ_pos)
theorem exists_eq_neg_succ_of_nat {a : } : a < 0 → ∃m : , a = -[1+m] :=
int.cases_on a
(take (m : nat) H, absurd (of_nat_nonneg m : 0 ≤ m) (not_le_of_gt H))
(take (m : nat) H, exists.intro m rfl)
theorem eq_one_of_mul_eq_one_right {a b : } (H : a ≥ 0) (H' : a * b = 1) : a = 1 :=
have a * b > 0, by rewrite H'; apply trivial,
have b > 0, from pos_of_mul_pos_left this H,
have a > 0, from pos_of_mul_pos_right `a * b > 0` (le_of_lt `b > 0`),
or.elim (le_or_gt a 1)
(suppose a ≤ 1,
show a = 1, from le.antisymm this (add_one_le_of_lt `a > 0`))
(suppose a > 1,
assert a * b ≥ 2 * 1,
from mul_le_mul (add_one_le_of_lt `a > 1`) (add_one_le_of_lt `b > 0`) trivial H,
have false, by rewrite [H' at this]; exact this,
false.elim this)
theorem eq_one_of_mul_eq_one_left {a b : } (H : b ≥ 0) (H' : a * b = 1) : b = 1 :=
eq_one_of_mul_eq_one_right H (!mul.comm ▸ H')
theorem eq_one_of_mul_eq_self_left {a b : } (Hpos : a ≠ 0) (H : b * a = a) : b = 1 :=
eq_of_mul_eq_mul_right Hpos (H ⬝ (one_mul a)⁻¹)
theorem eq_one_of_mul_eq_self_right {a b : } (Hpos : b ≠ 0) (H : b * a = b) : a = 1 :=
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
theorem eq_one_of_dvd_one {a : } (H : a ≥ 0) (H' : a 1) : a = 1 :=
dvd.elim H'
(take b,
suppose 1 = a * b,
eq_one_of_mul_eq_one_right H this⁻¹)
theorem exists_least_of_bdd {P : → Prop} [HP : decidable_pred P]
(Hbdd : ∃ b : , ∀ z : , z ≤ b → ¬ P z)
(Hinh : ∃ z : , P z) : ∃ lb : , P lb ∧ (∀ z : , z < lb → ¬ P z) :=
begin
cases Hbdd with [b, Hb],
cases Hinh with [elt, Helt],
existsi b + of_nat (least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b)))),
have Heltb : elt > b, begin
apply lt_of_not_ge,
intro Hge,
apply (Hb _ Hge) Helt
end,
have H' : P (b + of_nat (nat_abs (elt - b))), begin
rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt (iff.mpr !sub_pos_iff_lt Heltb)),
add.comm, sub_add_cancel],
apply Helt
end,
apply and.intro,
apply least_of_lt _ !lt_succ_self H',
intros z Hz,
cases em (z ≤ b) with [Hzb, Hzb],
apply Hb _ Hzb,
let Hzb' := lt_of_not_ge Hzb,
let Hpos := iff.mpr !sub_pos_iff_lt Hzb',
have Hzbk : z = b + of_nat (nat_abs (z - b)),
by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), int.add_comm, sub_add_cancel],
have Hk : nat_abs (z - b) < least (λ n, P (b + of_nat n)) (nat.succ (nat_abs (elt - b))), begin
note Hz' := iff.mp !lt_add_iff_sub_lt_left Hz,
rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'],
apply lt_of_of_nat_lt_of_nat Hz'
end,
let Hk' := not_le_of_gt Hk,
rewrite Hzbk,
apply λ p, mt (ge_least_of_lt _ p) Hk',
apply nat.lt_trans Hk,
apply least_lt _ !lt_succ_self H'
end
theorem exists_greatest_of_bdd {P : → Prop} [HP : decidable_pred P]
(Hbdd : ∃ b : , ∀ z : , z ≥ b → ¬ P z)
(Hinh : ∃ z : , P z) : ∃ ub : , P ub ∧ (∀ z : , z > ub → ¬ P z) :=
begin
cases Hbdd with [b, Hb],
cases Hinh with [elt, Helt],
existsi b - of_nat (least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt)))),
have Heltb : elt < b, begin
apply lt_of_not_ge,
intro Hge,
apply (Hb _ Hge) Helt
end,
have H' : P (b - of_nat (nat_abs (b - elt))), begin
rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt (iff.mpr !sub_pos_iff_lt Heltb)),
sub_sub_self],
apply Helt
end,
apply and.intro,
apply least_of_lt _ !lt_succ_self H',
intros z Hz,
cases em (z ≥ b) with [Hzb, Hzb],
apply Hb _ Hzb,
let Hzb' := lt_of_not_ge Hzb,
let Hpos := iff.mpr !sub_pos_iff_lt Hzb',
have Hzbk : z = b - of_nat (nat_abs (b - z)),
by rewrite [of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos), sub_sub_self],
have Hk : nat_abs (b - z) < least (λ n, P (b - of_nat n)) (nat.succ (nat_abs (b - elt))), begin
note Hz' := iff.mp !lt_add_iff_sub_lt_left (iff.mpr !lt_add_iff_sub_lt_right Hz),
rewrite [-of_nat_nat_abs_of_nonneg (int.le_of_lt Hpos) at Hz'],
apply lt_of_of_nat_lt_of_nat Hz'
end,
let Hk' := not_le_of_gt Hk,
rewrite Hzbk,
apply λ p, mt (ge_least_of_lt _ p) Hk',
apply nat.lt_trans Hk,
apply least_lt _ !lt_succ_self H'
end
end int