226 lines
7.7 KiB
Text
226 lines
7.7 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Leonardo de Moura
|
||
|
||
Complete lattices
|
||
|
||
TODO: define dual complete lattice and simplify proof of dual theorems.
|
||
-/
|
||
import algebra.lattice data.set
|
||
open set
|
||
|
||
namespace algebra
|
||
|
||
variable {A : Type}
|
||
|
||
structure complete_lattice [class] (A : Type) extends weak_order A :=
|
||
(Inf : set A → A)
|
||
(Inf_le : ∀ {a : A} {s : set A}, a ∈ s → le (Inf s) a)
|
||
(le_Inf : ∀ {b : A} {s : set A}, (∀ (a : A), a ∈ s → le b a) → le b (Inf s))
|
||
|
||
namespace complete_lattice
|
||
variable [C : complete_lattice A]
|
||
include C
|
||
|
||
definition Sup (s : set A) : A :=
|
||
Inf {b | ∀ a, a ∈ s → a ≤ b}
|
||
|
||
prefix `⨅`:70 := Inf
|
||
prefix `⨆`:65 := Sup
|
||
|
||
lemma le_Sup {a : A} {s : set A} : a ∈ s → a ≤ ⨆ s :=
|
||
suppose a ∈ s, le_Inf
|
||
(show ∀ (b : A), (∀ (a : A), a ∈ s → a ≤ b) → a ≤ b, from
|
||
take b, assume h, h a `a ∈ s`)
|
||
|
||
lemma Sup_le {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → a ≤ b) : ⨆ s ≤ b :=
|
||
Inf_le h
|
||
|
||
definition inf (a b : A) := ⨅ '{a, b}
|
||
definition sup (a b : A) := ⨆ '{a, b}
|
||
infix `⊓` := inf
|
||
infix `⊔` := sup
|
||
|
||
lemma inf_le_left (a b : A) : a ⊓ b ≤ a :=
|
||
Inf_le !mem_insert
|
||
|
||
lemma inf_le_right (a b : A) : a ⊓ b ≤ b :=
|
||
Inf_le (!mem_insert_of_mem !mem_insert)
|
||
|
||
lemma le_inf {a b c : A} : c ≤ a → c ≤ b → c ≤ a ⊓ b :=
|
||
assume h₁ h₂,
|
||
le_Inf (take x, suppose x ∈ '{a, b},
|
||
or.elim (eq_or_mem_of_mem_insert this)
|
||
(suppose x = a, by subst x; assumption)
|
||
(suppose x ∈ '{b},
|
||
assert x = b, from !eq_of_mem_singleton this,
|
||
by subst x; assumption))
|
||
|
||
lemma le_sup_left (a b : A) : a ≤ a ⊔ b :=
|
||
le_Sup !mem_insert
|
||
|
||
lemma le_sup_right (a b : A) : b ≤ a ⊔ b :=
|
||
le_Sup (!mem_insert_of_mem !mem_insert)
|
||
|
||
lemma sup_le {a b c : A} : a ≤ c → b ≤ c → a ⊔ b ≤ c :=
|
||
assume h₁ h₂,
|
||
Sup_le (take x, suppose x ∈ '{a, b},
|
||
or.elim (eq_or_mem_of_mem_insert this)
|
||
(suppose x = a, by subst x; assumption)
|
||
(suppose x ∈ '{b},
|
||
assert x = b, from !eq_of_mem_singleton this,
|
||
by subst x; assumption))
|
||
|
||
definition complete_lattice_is_lattice [instance] : lattice A :=
|
||
⦃ lattice, C,
|
||
inf := inf,
|
||
sup := sup,
|
||
inf_le_left := inf_le_left,
|
||
inf_le_right := inf_le_right,
|
||
le_inf := @le_inf A C,
|
||
le_sup_left := le_sup_left,
|
||
le_sup_right := le_sup_right,
|
||
sup_le := @sup_le A C ⦄
|
||
|
||
variable {f : A → A}
|
||
premise (mono : ∀ x y : A, x ≤ y → f x ≤ f y)
|
||
|
||
theorem knaster_tarski : ∃ a, f a = a ∧ ∀ b, f b = b → a ≤ b :=
|
||
let a := ⨅ {u | f u ≤ u} in
|
||
have h₁ : f a = a, from
|
||
have ge : f a ≤ a, from
|
||
have ∀ b, b ∈ {u | f u ≤ u} → f a ≤ b, from
|
||
take b, suppose f b ≤ b,
|
||
have a ≤ b, from Inf_le this,
|
||
have f a ≤ f b, from !mono this,
|
||
le.trans `f a ≤ f b` `f b ≤ b`,
|
||
le_Inf this,
|
||
have le : a ≤ f a, from
|
||
have f (f a) ≤ f a, from !mono ge,
|
||
have f a ∈ {u | f u ≤ u}, from this,
|
||
Inf_le this,
|
||
le.antisymm ge le,
|
||
have h₂ : ∀ b, f b = b → a ≤ b, from
|
||
take b,
|
||
suppose f b = b,
|
||
have b ∈ {u | f u ≤ u}, from
|
||
show f b ≤ b, by rewrite this; apply le.refl,
|
||
Inf_le this,
|
||
exists.intro a (and.intro h₁ h₂)
|
||
|
||
theorem knaster_tarski_dual : ∃ a, f a = a ∧ ∀ b, f b = b → b ≤ a :=
|
||
let a := ⨆ {u | u ≤ f u} in
|
||
have h₁ : f a = a, from
|
||
have le : a ≤ f a, from
|
||
have ∀ b, b ∈ {u | u ≤ f u} → b ≤ f a, from
|
||
take b, suppose b ≤ f b,
|
||
have b ≤ a, from le_Sup this,
|
||
have f b ≤ f a, from !mono this,
|
||
le.trans `b ≤ f b` `f b ≤ f a`,
|
||
Sup_le this,
|
||
have ge : f a ≤ a, from
|
||
have f a ≤ f (f a), from !mono le,
|
||
have f a ∈ {u | u ≤ f u}, from this,
|
||
le_Sup this,
|
||
le.antisymm ge le,
|
||
have h₂ : ∀ b, f b = b → b ≤ a, from
|
||
take b,
|
||
suppose f b = b,
|
||
have b ≤ f b, by rewrite this; apply le.refl,
|
||
le_Sup this,
|
||
exists.intro a (and.intro h₁ h₂)
|
||
|
||
definition bot : A := ⨅ univ
|
||
definition top : A := ⨆ univ
|
||
notation `⊥` := bot
|
||
notation `⊤` := top
|
||
|
||
lemma bot_le (a : A) : ⊥ ≤ a :=
|
||
Inf_le !mem_univ
|
||
|
||
lemma eq_bot {a : A} : (∀ b, a ≤ b) → a = ⊥ :=
|
||
assume h,
|
||
have a ≤ ⊥, from le_Inf (take b bin, h b),
|
||
le.antisymm this !bot_le
|
||
|
||
lemma le_top (a : A) : a ≤ ⊤ :=
|
||
le_Sup !mem_univ
|
||
|
||
lemma eq_top {a : A} : (∀ b, b ≤ a) → a = ⊤ :=
|
||
assume h,
|
||
have ⊤ ≤ a, from Sup_le (take b bin, h b),
|
||
le.antisymm !le_top this
|
||
|
||
lemma Inf_singleton {a : A} : ⨅'{a} = a :=
|
||
have ⨅'{a} ≤ a, from
|
||
Inf_le !mem_insert,
|
||
have a ≤ ⨅'{a}, from
|
||
le_Inf (take b, suppose b ∈ '{a}, assert b = a, from eq_of_mem_singleton this, by rewrite this; apply le.refl),
|
||
le.antisymm `⨅'{a} ≤ a` `a ≤ ⨅'{a}`
|
||
|
||
lemma Sup_singleton {a : A} : ⨆'{a} = a :=
|
||
have ⨆'{a} ≤ a, from
|
||
Sup_le (take b, suppose b ∈ '{a}, assert b = a, from eq_of_mem_singleton this, by rewrite this; apply le.refl),
|
||
have a ≤ ⨆'{a}, from
|
||
le_Sup !mem_insert,
|
||
le.antisymm `⨆'{a} ≤ a` `a ≤ ⨆'{a}`
|
||
|
||
lemma Inf_antimono {s₁ s₂ : set A} : s₁ ⊆ s₂ → ⨅ s₂ ≤ ⨅ s₁ :=
|
||
suppose s₁ ⊆ s₂, le_Inf (take a : A, suppose a ∈ s₁, Inf_le (mem_of_subset_of_mem `s₁ ⊆ s₂` `a ∈ s₁`))
|
||
|
||
lemma Sup_mono {s₁ s₂ : set A} : s₁ ⊆ s₂ → ⨆ s₁ ≤ ⨆ s₂ :=
|
||
suppose s₁ ⊆ s₂, Sup_le (take a : A, suppose a ∈ s₁, le_Sup (mem_of_subset_of_mem `s₁ ⊆ s₂` `a ∈ s₁`))
|
||
|
||
lemma Inf_union (s₁ s₂ : set A) : ⨅ (s₁ ∪ s₂) = (⨅s₁) ⊓ (⨅s₂) :=
|
||
have le₁ : ⨅ (s₁ ∪ s₂) ≤ (⨅s₁) ⊓ (⨅s₂), from
|
||
le_inf
|
||
(le_Inf (take a : A, suppose a ∈ s₁, Inf_le (mem_union_of_mem_left _ `a ∈ s₁`)))
|
||
(le_Inf (take a : A, suppose a ∈ s₂, Inf_le (mem_union_of_mem_right _ `a ∈ s₂`))),
|
||
have le₂ : (⨅s₁) ⊓ (⨅s₂) ≤ ⨅ (s₁ ∪ s₂), from
|
||
le_Inf (take a : A, suppose a ∈ s₁ ∪ s₂,
|
||
or.elim this
|
||
(suppose a ∈ s₁,
|
||
have (⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₁, from !inf_le_left,
|
||
have ⨅s₁ ≤ a, from Inf_le `a ∈ s₁`,
|
||
le.trans `(⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₁` `⨅s₁ ≤ a`)
|
||
(suppose a ∈ s₂,
|
||
have (⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₂, from !inf_le_right,
|
||
have ⨅s₂ ≤ a, from Inf_le `a ∈ s₂`,
|
||
le.trans `(⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₂` `⨅s₂ ≤ a`)),
|
||
le.antisymm le₁ le₂
|
||
|
||
lemma Sup_union (s₁ s₂ : set A) : ⨆ (s₁ ∪ s₂) = (⨆s₁) ⊔ (⨆s₂) :=
|
||
have le₁ : ⨆ (s₁ ∪ s₂) ≤ (⨆s₁) ⊔ (⨆s₂), from
|
||
Sup_le (take a : A, suppose a ∈ s₁ ∪ s₂,
|
||
or.elim this
|
||
(suppose a ∈ s₁,
|
||
have a ≤ ⨆s₁, from le_Sup `a ∈ s₁`,
|
||
have ⨆s₁ ≤ (⨆s₁) ⊔ (⨆s₂), from !le_sup_left,
|
||
le.trans `a ≤ ⨆s₁` `⨆s₁ ≤ (⨆s₁) ⊔ (⨆s₂)`)
|
||
(suppose a ∈ s₂,
|
||
have a ≤ ⨆s₂, from le_Sup `a ∈ s₂`,
|
||
have ⨆s₂ ≤ (⨆s₁) ⊔ (⨆s₂), from !le_sup_right,
|
||
le.trans `a ≤ ⨆s₂` `⨆s₂ ≤ (⨆s₁) ⊔ (⨆s₂)`)),
|
||
have le₂ : (⨆s₁) ⊔ (⨆s₂) ≤ ⨆ (s₁ ∪ s₂), from
|
||
sup_le
|
||
(Sup_le (take a : A, suppose a ∈ s₁, le_Sup (mem_union_of_mem_left _ `a ∈ s₁`)))
|
||
(Sup_le (take a : A, suppose a ∈ s₂, le_Sup (mem_union_of_mem_right _ `a ∈ s₂`))),
|
||
le.antisymm le₁ le₂
|
||
|
||
lemma Inf_empty_eq_Sup_univ : ⨅ (∅ : set A) = ⨆ univ :=
|
||
have le₁ : ⨅ ∅ ≤ ⨆ univ, from
|
||
le_Sup !mem_univ,
|
||
have le₂ : ⨆ univ ≤ ⨅ ∅, from
|
||
le_Inf (take a, suppose a ∈ ∅, absurd this !not_mem_empty),
|
||
le.antisymm le₁ le₂
|
||
|
||
lemma Sup_empty_eq_Inf_univ : ⨆ (∅ : set A) = ⨅ univ :=
|
||
have le₁ : ⨆ (∅ : set A) ≤ ⨅ univ, from
|
||
Sup_le (take a, suppose a ∈ ∅, absurd this !not_mem_empty),
|
||
have le₂ : ⨅ univ ≤ ⨆ (∅ : set A), from
|
||
Inf_le !mem_univ,
|
||
le.antisymm le₁ le₂
|
||
|
||
end complete_lattice
|
||
end algebra
|