064ecd3e3d
We also define key theorems that will be used to generate the automatically generated a well-founded subterm relation for inductive datatypes. We also prove decidability and wf theorems asap.
18 lines
395 B
Text
18 lines
395 B
Text
import logic data.num data.nat.basic
|
||
open num
|
||
constant b : num
|
||
check b + b + b
|
||
check true ∧ false ∧ true
|
||
check (true ∧ false) ∧ true
|
||
check 2 + (2 + 2)
|
||
check (2 + 2) + 2
|
||
check 1 = (2 + 3)*2
|
||
check 2 + 3 * 2 = 3 * 2 + 2
|
||
check (true ∨ false) = (true ∨ false) ∧ true
|
||
check true ∧ (false ∨ true)
|
||
constant A : Type₁
|
||
constant a : A
|
||
notation 1 := a
|
||
check a
|
||
open nat
|
||
check ℕ → ℕ
|