lean2/tests/lean/notation.lean
Leonardo de Moura 064ecd3e3d refactor(library/data/nat): declare lt and le asap using inductive definitions, and make key theorems transparent for definitional package
We also define key theorems that will be used to generate the
automatically generated a well-founded subterm relation for inductive
datatypes.
We also prove decidability and wf theorems asap.
2014-11-22 00:19:39 -08:00

18 lines
395 B
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import logic data.num data.nat.basic
open num
constant b : num
check b + b + b
check true ∧ false ∧ true
check (true ∧ false) ∧ true
check 2 + (2 + 2)
check (2 + 2) + 2
check 1 = (2 + 3)*2
check 2 + 3 * 2 = 3 * 2 + 2
check (true false) = (true false) ∧ true
check true ∧ (false true)
constant A : Type₁
constant a : A
notation 1 := a
check a
open nat
check