lean2/hott/algebra/ordered_group.hlean
2016-12-02 16:55:23 -08:00

869 lines
34 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
Partially ordered additive groups, modeled on Isabelle's library. These classes can be refined
if necessary.
-/
import algebra.binary algebra.group algebra.order
open eq eq.ops algebra -- note: ⁻¹ will be overloaded
set_option class.force_new true
variable {A : Type}
/- partially ordered monoids, such as the natural numbers -/
namespace algebra
structure ordered_mul_cancel_comm_monoid [class] (A : Type) extends comm_monoid A,
left_cancel_semigroup A, right_cancel_semigroup A, order_pair A :=
(mul_le_mul_left : Πa b, le a b → Πc, le (mul c a) (mul c b))
(le_of_mul_le_mul_left : Πa b c, le (mul a b) (mul a c) → le b c)
(mul_lt_mul_left : Πa b, lt a b → Πc, lt (mul c a) (mul c b))
(lt_of_mul_lt_mul_left : Πa b c, lt (mul a b) (mul a c) → lt b c)
definition ordered_cancel_comm_monoid [class] : Type → Type := ordered_mul_cancel_comm_monoid
definition add_comm_monoid_of_ordered_cancel_comm_monoid [reducible] [trans_instance]
(A : Type) [H : ordered_cancel_comm_monoid A] : add_comm_monoid A :=
@ordered_mul_cancel_comm_monoid.to_comm_monoid A H
definition add_left_cancel_semigroup_of_ordered_cancel_comm_monoid [reducible] [trans_instance]
(A : Type) [H : ordered_cancel_comm_monoid A] : add_left_cancel_semigroup A :=
@ordered_mul_cancel_comm_monoid.to_left_cancel_semigroup A H
definition add_right_cancel_semigroup_of_ordered_cancel_comm_monoid [reducible] [trans_instance]
(A : Type) [H : ordered_cancel_comm_monoid A] : add_right_cancel_semigroup A :=
@ordered_mul_cancel_comm_monoid.to_right_cancel_semigroup A H
definition order_pair_of_ordered_cancel_comm_monoid [reducible] [trans_instance]
(A : Type) [H : ordered_cancel_comm_monoid A] : order_pair A :=
@ordered_mul_cancel_comm_monoid.to_order_pair A H
section
variables [s : ordered_cancel_comm_monoid A]
variables {a b c d e : A}
include s
theorem add_lt_add_left (H : a < b) (c : A) : c + a < c + b :=
@ordered_mul_cancel_comm_monoid.mul_lt_mul_left A s a b H c
theorem add_lt_add_right (H : a < b) (c : A) : a + c < b + c :=
begin
rewrite [add.comm, {b + _}add.comm],
exact (add_lt_add_left H c)
end
theorem add_le_add_left (H : a ≤ b) (c : A) : c + a ≤ c + b :=
@ordered_mul_cancel_comm_monoid.mul_le_mul_left A s a b H c
theorem add_le_add_right (H : a ≤ b) (c : A) : a + c ≤ b + c :=
(add.comm c a) ▸ (add.comm c b) ▸ (add_le_add_left H c)
theorem add_le_add (Hab : a ≤ b) (Hcd : c ≤ d) : a + c ≤ b + d :=
le.trans (add_le_add_right Hab c) (add_le_add_left Hcd b)
theorem le_add_of_nonneg_right (H : b ≥ 0) : a ≤ a + b :=
begin
have H1 : a + b ≥ a + 0, from add_le_add_left H a,
rewrite add_zero at H1,
exact H1
end
theorem le_add_of_nonneg_left (H : b ≥ 0) : a ≤ b + a :=
begin
have H1 : 0 + a ≤ b + a, from add_le_add_right H a,
rewrite zero_add at H1,
exact H1
end
theorem add_lt_add (Hab : a < b) (Hcd : c < d) : a + c < b + d :=
lt.trans (add_lt_add_right Hab c) (add_lt_add_left Hcd b)
theorem add_lt_add_of_le_of_lt (Hab : a ≤ b) (Hcd : c < d) : a + c < b + d :=
lt_of_le_of_lt (add_le_add_right Hab c) (add_lt_add_left Hcd b)
theorem add_lt_add_of_lt_of_le (Hab : a < b) (Hcd : c ≤ d) : a + c < b + d :=
lt_of_lt_of_le (add_lt_add_right Hab c) (add_le_add_left Hcd b)
theorem lt_add_of_pos_right (H : b > 0) : a < a + b := !add_zero ▸ add_lt_add_left H a
theorem lt_add_of_pos_left (H : b > 0) : a < b + a := !zero_add ▸ add_lt_add_right H a
-- here we start using le_of_add_le_add_left.
theorem le_of_add_le_add_left (H : a + b ≤ a + c) : b ≤ c :=
@ordered_mul_cancel_comm_monoid.le_of_mul_le_mul_left A s a b c H
theorem le_of_add_le_add_right (H : a + b ≤ c + b) : a ≤ c :=
le_of_add_le_add_left (show b + a ≤ b + c, begin rewrite [add.comm, {b + _}add.comm], exact H end)
theorem lt_of_add_lt_add_left (H : a + b < a + c) : b < c :=
@ordered_mul_cancel_comm_monoid.lt_of_mul_lt_mul_left A s a b c H
theorem lt_of_add_lt_add_right (H : a + b < c + b) : a < c :=
lt_of_add_lt_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H)
theorem add_le_add_left_iff (a b c : A) : a + b ≤ a + c ↔ b ≤ c :=
iff.intro le_of_add_le_add_left (assume H, add_le_add_left H _)
theorem add_le_add_right_iff (a b c : A) : a + b ≤ c + b ↔ a ≤ c :=
iff.intro le_of_add_le_add_right (assume H, add_le_add_right H _)
theorem add_lt_add_left_iff (a b c : A) : a + b < a + c ↔ b < c :=
iff.intro lt_of_add_lt_add_left (assume H, add_lt_add_left H _)
theorem add_lt_add_right_iff (a b c : A) : a + b < c + b ↔ a < c :=
iff.intro lt_of_add_lt_add_right (assume H, add_lt_add_right H _)
-- here we start using properties of zero.
theorem add_nonneg (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a + b :=
!zero_add ▸ (add_le_add Ha Hb)
theorem add_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a + b :=
!zero_add ▸ (add_lt_add Ha Hb)
theorem add_pos_of_pos_of_nonneg (Ha : 0 < a) (Hb : 0 ≤ b) : 0 < a + b :=
!zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb)
theorem add_pos_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 < a + b :=
!zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb)
theorem add_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : a + b ≤ 0 :=
!zero_add ▸ (add_le_add Ha Hb)
theorem add_neg (Ha : a < 0) (Hb : b < 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add Ha Hb)
theorem add_neg_of_neg_of_nonpos (Ha : a < 0) (Hb : b ≤ 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb)
theorem add_neg_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb)
-- TODO: add nonpos version (will be easier with simplifier)
theorem add_eq_zero_iff_eq_zero_prod_eq_zero_of_nonneg_of_nonneg
(Ha : 0 ≤ a) (Hb : 0 ≤ b) : a + b = 0 ↔ a = 0 × b = 0 :=
iff.intro
(assume Hab : a + b = 0,
have Ha' : a ≤ 0, from
calc
a = a + 0 : by rewrite add_zero
... ≤ a + b : add_le_add_left Hb
... = 0 : Hab,
have Haz : a = 0, from le.antisymm Ha' Ha,
have Hb' : b ≤ 0, from
calc
b = 0 + b : by rewrite zero_add
... ≤ a + b : by exact add_le_add_right Ha _
... = 0 : Hab,
have Hbz : b = 0, from le.antisymm Hb' Hb,
pair Haz Hbz)
(assume Hab : a = 0 × b = 0,
obtain Ha' Hb', from Hab,
by rewrite [Ha', Hb', add_zero])
theorem le_add_of_nonneg_of_le (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c :=
!zero_add ▸ add_le_add Ha Hbc
theorem le_add_of_le_of_nonneg (Hbc : b ≤ c) (Ha : 0 ≤ a) : b ≤ c + a :=
!add_zero ▸ add_le_add Hbc Ha
theorem lt_add_of_pos_of_le (Ha : 0 < a) (Hbc : b ≤ c) : b < a + c :=
!zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc
theorem lt_add_of_le_of_pos (Hbc : b ≤ c) (Ha : 0 < a) : b < c + a :=
!add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha
theorem add_le_of_nonpos_of_le (Ha : a ≤ 0) (Hbc : b ≤ c) : a + b ≤ c :=
!zero_add ▸ add_le_add Ha Hbc
theorem add_le_of_le_of_nonpos (Hbc : b ≤ c) (Ha : a ≤ 0) : b + a ≤ c :=
!add_zero ▸ add_le_add Hbc Ha
theorem add_lt_of_neg_of_le (Ha : a < 0) (Hbc : b ≤ c) : a + b < c :=
!zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc
theorem add_lt_of_le_of_neg (Hbc : b ≤ c) (Ha : a < 0) : b + a < c :=
!add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha
theorem lt_add_of_nonneg_of_lt (Ha : 0 ≤ a) (Hbc : b < c) : b < a + c :=
!zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc
theorem lt_add_of_lt_of_nonneg (Hbc : b < c) (Ha : 0 ≤ a) : b < c + a :=
!add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha
theorem lt_add_of_pos_of_lt (Ha : 0 < a) (Hbc : b < c) : b < a + c :=
!zero_add ▸ add_lt_add Ha Hbc
theorem lt_add_of_lt_of_pos (Hbc : b < c) (Ha : 0 < a) : b < c + a :=
!add_zero ▸ add_lt_add Hbc Ha
theorem add_lt_of_nonpos_of_lt (Ha : a ≤ 0) (Hbc : b < c) : a + b < c :=
!zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc
theorem add_lt_of_lt_of_nonpos (Hbc : b < c) (Ha : a ≤ 0) : b + a < c :=
!add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha
theorem add_lt_of_neg_of_lt (Ha : a < 0) (Hbc : b < c) : a + b < c :=
!zero_add ▸ add_lt_add Ha Hbc
theorem add_lt_of_lt_of_neg (Hbc : b < c) (Ha : a < 0) : b + a < c :=
!add_zero ▸ add_lt_add Hbc Ha
end
/- partially ordered groups -/
structure ordered_mul_ab_group [class] (A : Type) extends ab_group A, order_pair A :=
(mul_le_mul_left : Πa b, le a b → Πc, le (mul c a) (mul c b))
(mul_lt_mul_left : Πa b, lt a b → Π c, lt (mul c a) (mul c b))
definition ordered_ab_group [class] : Type → Type := ordered_mul_ab_group
definition add_ab_group_of_ordered_ab_group [reducible] [trans_instance] (A : Type)
[H : ordered_ab_group A] : add_ab_group A :=
@ordered_mul_ab_group.to_ab_group A H
theorem ordered_mul_ab_group.le_of_mul_le_mul_left [s : ordered_mul_ab_group A] {a b c : A}
(H : a * b ≤ a * c) : b ≤ c :=
have H' : a⁻¹ * (a * b) ≤ a⁻¹ * (a * c), from ordered_mul_ab_group.mul_le_mul_left _ _ H _,
by rewrite *inv_mul_cancel_left at H'; exact H'
theorem ordered_mul_ab_group.lt_of_mul_lt_mul_left [s : ordered_mul_ab_group A] {a b c : A}
(H : a * b < a * c) : b < c :=
have H' : a⁻¹ * (a * b) < a⁻¹ * (a * c), from ordered_mul_ab_group.mul_lt_mul_left _ _ H _,
by rewrite *inv_mul_cancel_left at H'; exact H'
definition ordered_mul_ab_group.to_ordered_mul_cancel_comm_monoid [reducible] [trans_instance]
[s : ordered_mul_ab_group A] : ordered_mul_cancel_comm_monoid A :=
⦃ ordered_mul_cancel_comm_monoid, s,
mul_left_cancel := @mul.left_cancel A _,
mul_right_cancel := @mul.right_cancel A _,
le_of_mul_le_mul_left := @ordered_mul_ab_group.le_of_mul_le_mul_left A _,
lt_of_mul_lt_mul_left := @ordered_mul_ab_group.lt_of_mul_lt_mul_left A _⦄
definition ordered_ab_group.to_ordered_cancel_comm_monoid [reducible] [trans_instance]
[s : ordered_ab_group A] : ordered_cancel_comm_monoid A :=
@ordered_mul_ab_group.to_ordered_mul_cancel_comm_monoid A s
section
variables [s : ordered_ab_group A] (a b c d e : A)
include s
theorem neg_le_neg {a b : A} (H : a ≤ b) : -b ≤ -a :=
have H1 : 0 ≤ -a + b, from !add.left_inv ▸ !(add_le_add_left H),
!add_neg_cancel_right ▸ !zero_add ▸ add_le_add_right H1 (-b)
theorem le_of_neg_le_neg {a b : A} (H : -b ≤ -a) : a ≤ b :=
neg_neg a ▸ neg_neg b ▸ neg_le_neg H
theorem neg_le_neg_iff_le : -a ≤ -b ↔ b ≤ a :=
iff.intro le_of_neg_le_neg neg_le_neg
theorem nonneg_of_neg_nonpos {a : A} (H : -a ≤ 0) : 0 ≤ a :=
le_of_neg_le_neg (neg_zero⁻¹ ▸ H)
theorem neg_nonpos_of_nonneg {a : A} (H : 0 ≤ a) : -a ≤ 0 :=
neg_zero ▸ neg_le_neg H
theorem neg_nonpos_iff_nonneg : -a ≤ 0 ↔ 0 ≤ a :=
iff.intro nonneg_of_neg_nonpos neg_nonpos_of_nonneg
theorem nonpos_of_neg_nonneg {a : A} (H : 0 ≤ -a) : a ≤ 0 :=
le_of_neg_le_neg (neg_zero⁻¹ ▸ H)
theorem neg_nonneg_of_nonpos {a : A} (H : a ≤ 0) : 0 ≤ -a :=
neg_zero ▸ neg_le_neg H
theorem neg_nonneg_iff_nonpos : 0 ≤ -a ↔ a ≤ 0 :=
iff.intro nonpos_of_neg_nonneg neg_nonneg_of_nonpos
theorem neg_lt_neg {a b : A} (H : a < b) : -b < -a :=
have H1 : 0 < -a + b, from !add.left_inv ▸ !(add_lt_add_left H),
!add_neg_cancel_right ▸ !zero_add ▸ add_lt_add_right H1 (-b)
theorem lt_of_neg_lt_neg {a b : A} (H : -b < -a) : a < b :=
neg_neg a ▸ neg_neg b ▸ neg_lt_neg H
theorem neg_lt_neg_iff_lt : -a < -b ↔ b < a :=
iff.intro lt_of_neg_lt_neg neg_lt_neg
theorem pos_of_neg_neg {a : A} (H : -a < 0) : 0 < a :=
lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H)
theorem neg_neg_of_pos {a : A} (H : 0 < a) : -a < 0 :=
neg_zero ▸ neg_lt_neg H
theorem neg_neg_iff_pos : -a < 0 ↔ 0 < a :=
iff.intro pos_of_neg_neg neg_neg_of_pos
theorem neg_of_neg_pos {a : A} (H : 0 < -a) : a < 0 :=
lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H)
theorem neg_pos_of_neg {a : A} (H : a < 0) : 0 < -a :=
neg_zero ▸ neg_lt_neg H
theorem neg_pos_iff_neg : 0 < -a ↔ a < 0 :=
iff.intro neg_of_neg_pos neg_pos_of_neg
theorem le_neg_iff_le_neg : a ≤ -b ↔ b ≤ -a := !neg_neg ▸ !neg_le_neg_iff_le
theorem le_neg_of_le_neg {a b : A} : a ≤ -b → b ≤ -a := iff.mp !le_neg_iff_le_neg
theorem neg_le_iff_neg_le : -a ≤ b ↔ -b ≤ a := !neg_neg ▸ !neg_le_neg_iff_le
theorem neg_le_of_neg_le {a b : A} : -a ≤ b → -b ≤ a := iff.mp !neg_le_iff_neg_le
theorem lt_neg_iff_lt_neg : a < -b ↔ b < -a := !neg_neg ▸ !neg_lt_neg_iff_lt
theorem lt_neg_of_lt_neg {a b : A} : a < -b → b < -a := iff.mp !lt_neg_iff_lt_neg
theorem neg_lt_iff_neg_lt : -a < b ↔ -b < a := !neg_neg ▸ !neg_lt_neg_iff_lt
theorem neg_lt_of_neg_lt {a b : A} : -a < b → -b < a := iff.mp !neg_lt_iff_neg_lt
theorem sub_nonneg_iff_le : 0 ≤ a - b ↔ b ≤ a := !sub_self ▸ !add_le_add_right_iff
theorem sub_nonneg_of_le {a b : A} : b ≤ a → 0 ≤ a - b := iff.mpr !sub_nonneg_iff_le
theorem le_of_sub_nonneg {a b : A} : 0 ≤ a - b → b ≤ a := iff.mp !sub_nonneg_iff_le
theorem sub_nonpos_iff_le : a - b ≤ 0 ↔ a ≤ b := !sub_self ▸ !add_le_add_right_iff
theorem sub_nonpos_of_le {a b : A} : a ≤ b → a - b ≤ 0 := iff.mpr !sub_nonpos_iff_le
theorem le_of_sub_nonpos {a b : A} : a - b ≤ 0 → a ≤ b := iff.mp !sub_nonpos_iff_le
theorem sub_pos_iff_lt : 0 < a - b ↔ b < a := !sub_self ▸ !add_lt_add_right_iff
theorem sub_pos_of_lt {a b : A} : b < a → 0 < a - b := iff.mpr !sub_pos_iff_lt
theorem lt_of_sub_pos {a b : A} : 0 < a - b → b < a := iff.mp !sub_pos_iff_lt
theorem sub_neg_iff_lt : a - b < 0 ↔ a < b := !sub_self ▸ !add_lt_add_right_iff
theorem sub_neg_of_lt {a b : A} : a < b → a - b < 0 := iff.mpr !sub_neg_iff_lt
theorem lt_of_sub_neg {a b : A} : a - b < 0 → a < b := iff.mp !sub_neg_iff_lt
theorem add_le_iff_le_neg_add : a + b ≤ c ↔ b ≤ -a + c :=
have H: a + b ≤ c ↔ -a + (a + b) ≤ -a + c, from iff.symm (!add_le_add_left_iff),
!neg_add_cancel_left ▸ H
theorem add_le_of_le_neg_add {a b c : A} : b ≤ -a + c → a + b ≤ c :=
iff.mpr !add_le_iff_le_neg_add
theorem le_neg_add_of_add_le {a b c : A} : a + b ≤ c → b ≤ -a + c :=
iff.mp !add_le_iff_le_neg_add
theorem add_le_iff_le_sub_left : a + b ≤ c ↔ b ≤ c - a :=
by rewrite [sub_eq_add_neg, {c+_}add.comm]; apply add_le_iff_le_neg_add
theorem add_le_of_le_sub_left {a b c : A} : b ≤ c - a → a + b ≤ c :=
iff.mpr !add_le_iff_le_sub_left
theorem le_sub_left_of_add_le {a b c : A} : a + b ≤ c → b ≤ c - a :=
iff.mp !add_le_iff_le_sub_left
theorem add_le_iff_le_sub_right : a + b ≤ c ↔ a ≤ c - b :=
have H: a + b ≤ c ↔ a + b - b ≤ c - b, from iff.symm (!add_le_add_right_iff),
!add_neg_cancel_right ▸ H
theorem add_le_of_le_sub_right {a b c : A} : a ≤ c - b → a + b ≤ c :=
iff.mpr !add_le_iff_le_sub_right
theorem le_sub_right_of_add_le {a b c : A} : a + b ≤ c → a ≤ c - b :=
iff.mp !add_le_iff_le_sub_right
theorem le_add_iff_neg_add_le : a ≤ b + c ↔ -b + a ≤ c :=
have H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff),
by rewrite neg_add_cancel_left at H; exact H
theorem le_add_of_neg_add_le {a b c : A} : -b + a ≤ c → a ≤ b + c :=
iff.mpr !le_add_iff_neg_add_le
theorem neg_add_le_of_le_add {a b c : A} : a ≤ b + c → -b + a ≤ c :=
iff.mp !le_add_iff_neg_add_le
theorem le_add_iff_sub_left_le : a ≤ b + c ↔ a - b ≤ c :=
by rewrite [sub_eq_add_neg, {a+_}add.comm]; apply le_add_iff_neg_add_le
theorem le_add_of_sub_left_le {a b c : A} : a - b ≤ c → a ≤ b + c :=
iff.mpr !le_add_iff_sub_left_le
theorem sub_left_le_of_le_add {a b c : A} : a ≤ b + c → a - b ≤ c :=
iff.mp !le_add_iff_sub_left_le
theorem le_add_iff_sub_right_le : a ≤ b + c ↔ a - c ≤ b :=
have H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff),
by rewrite [sub_eq_add_neg (b+c) c at H, add_neg_cancel_right at H]; exact H
theorem le_add_of_sub_right_le {a b c : A} : a - c ≤ b → a ≤ b + c :=
iff.mpr !le_add_iff_sub_right_le
theorem sub_right_le_of_le_add {a b c : A} : a ≤ b + c → a - c ≤ b :=
iff.mp !le_add_iff_sub_right_le
theorem le_add_iff_neg_add_le_left : a ≤ b + c ↔ -b + a ≤ c :=
have H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff),
by rewrite neg_add_cancel_left at H; exact H
theorem le_add_of_neg_add_le_left {a b c : A} : -b + a ≤ c → a ≤ b + c :=
iff.mpr !le_add_iff_neg_add_le_left
theorem neg_add_le_left_of_le_add {a b c : A} : a ≤ b + c → -b + a ≤ c :=
iff.mp !le_add_iff_neg_add_le_left
theorem le_add_iff_neg_add_le_right : a ≤ b + c ↔ -c + a ≤ b :=
by rewrite add.comm; apply le_add_iff_neg_add_le_left
theorem le_add_of_neg_add_le_right {a b c : A} : -c + a ≤ b → a ≤ b + c :=
iff.mpr !le_add_iff_neg_add_le_right
theorem neg_add_le_right_of_le_add {a b c : A} : a ≤ b + c → -c + a ≤ b :=
iff.mp !le_add_iff_neg_add_le_right
theorem le_add_iff_neg_le_sub_left : c ≤ a + b ↔ -a ≤ b - c :=
have H : c ≤ a + b ↔ -a + c ≤ b, from !le_add_iff_neg_add_le,
have H' : -a + c ≤ b ↔ -a ≤ b - c, from !add_le_iff_le_sub_right,
iff.trans H H'
theorem le_add_of_neg_le_sub_left {a b c : A} : -a ≤ b - c → c ≤ a + b :=
iff.mpr !le_add_iff_neg_le_sub_left
theorem neg_le_sub_left_of_le_add {a b c : A} : c ≤ a + b → -a ≤ b - c :=
iff.mp !le_add_iff_neg_le_sub_left
theorem le_add_iff_neg_le_sub_right : c ≤ a + b ↔ -b ≤ a - c :=
by rewrite add.comm; apply le_add_iff_neg_le_sub_left
theorem le_add_of_neg_le_sub_right {a b c : A} : -b ≤ a - c → c ≤ a + b :=
iff.mpr !le_add_iff_neg_le_sub_right
theorem neg_le_sub_right_of_le_add {a b c : A} : c ≤ a + b → -b ≤ a - c :=
iff.mp !le_add_iff_neg_le_sub_right
theorem add_lt_iff_lt_neg_add_left : a + b < c ↔ b < -a + c :=
have H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff),
begin rewrite neg_add_cancel_left at H, exact H end
theorem add_lt_of_lt_neg_add_left {a b c : A} : b < -a + c → a + b < c :=
iff.mpr !add_lt_iff_lt_neg_add_left
theorem lt_neg_add_left_of_add_lt {a b c : A} : a + b < c → b < -a + c :=
iff.mp !add_lt_iff_lt_neg_add_left
theorem add_lt_iff_lt_neg_add_right : a + b < c ↔ a < -b + c :=
by rewrite add.comm; apply add_lt_iff_lt_neg_add_left
theorem add_lt_of_lt_neg_add_right {a b c : A} : a < -b + c → a + b < c :=
iff.mpr !add_lt_iff_lt_neg_add_right
theorem lt_neg_add_right_of_add_lt {a b c : A} : a + b < c → a < -b + c :=
iff.mp !add_lt_iff_lt_neg_add_right
theorem add_lt_iff_lt_sub_left : a + b < c ↔ b < c - a :=
begin
rewrite [sub_eq_add_neg, {c+_}add.comm],
apply add_lt_iff_lt_neg_add_left
end
theorem add_lt_of_lt_sub_left {a b c : A} : b < c - a → a + b < c :=
iff.mpr !add_lt_iff_lt_sub_left
theorem lt_sub_left_of_add_lt {a b c : A} : a + b < c → b < c - a :=
iff.mp !add_lt_iff_lt_sub_left
theorem add_lt_iff_lt_sub_right : a + b < c ↔ a < c - b :=
have H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff),
by rewrite [sub_eq_add_neg at H, add_neg_cancel_right at H]; exact H
theorem add_lt_of_lt_sub_right {a b c : A} : a < c - b → a + b < c :=
iff.mpr !add_lt_iff_lt_sub_right
theorem lt_sub_right_of_add_lt {a b c : A} : a + b < c → a < c - b :=
iff.mp !add_lt_iff_lt_sub_right
theorem lt_add_iff_neg_add_lt_left : a < b + c ↔ -b + a < c :=
have H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff),
by rewrite neg_add_cancel_left at H; exact H
theorem lt_add_of_neg_add_lt_left {a b c : A} : -b + a < c → a < b + c :=
iff.mpr !lt_add_iff_neg_add_lt_left
theorem neg_add_lt_left_of_lt_add {a b c : A} : a < b + c → -b + a < c :=
iff.mp !lt_add_iff_neg_add_lt_left
theorem lt_add_iff_neg_add_lt_right : a < b + c ↔ -c + a < b :=
by rewrite add.comm; apply lt_add_iff_neg_add_lt_left
theorem lt_add_of_neg_add_lt_right {a b c : A} : -c + a < b → a < b + c :=
iff.mpr !lt_add_iff_neg_add_lt_right
theorem neg_add_lt_right_of_lt_add {a b c : A} : a < b + c → -c + a < b :=
iff.mp !lt_add_iff_neg_add_lt_right
theorem lt_add_iff_sub_lt_left : a < b + c ↔ a - b < c :=
by rewrite [sub_eq_add_neg, {a + _}add.comm]; apply lt_add_iff_neg_add_lt_left
theorem lt_add_of_sub_lt_left {a b c : A} : a - b < c → a < b + c :=
iff.mpr !lt_add_iff_sub_lt_left
theorem sub_lt_left_of_lt_add {a b c : A} : a < b + c → a - b < c :=
iff.mp !lt_add_iff_sub_lt_left
theorem lt_add_iff_sub_lt_right : a < b + c ↔ a - c < b :=
by rewrite add.comm; apply lt_add_iff_sub_lt_left
theorem lt_add_of_sub_lt_right {a b c : A} : a - c < b → a < b + c :=
iff.mpr !lt_add_iff_sub_lt_right
theorem sub_lt_right_of_lt_add {a b c : A} : a < b + c → a - c < b :=
iff.mp !lt_add_iff_sub_lt_right
theorem sub_lt_of_sub_lt {a b c : A} : a - b < c → a - c < b :=
begin
intro H,
apply sub_lt_left_of_lt_add,
apply lt_add_of_sub_lt_right H
end
theorem sub_le_of_sub_le {a b c : A} : a - b ≤ c → a - c ≤ b :=
begin
intro H,
apply sub_left_le_of_le_add,
apply le_add_of_sub_right_le H
end
-- TODO: the Isabelle library has varations on a + b ≤ b ↔ a ≤ 0
theorem le_iff_le_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a ≤ b ↔ c ≤ d :=
calc
a ≤ b ↔ a - b ≤ 0 : iff.symm (sub_nonpos_iff_le a b)
... = (c - d ≤ 0) : by rewrite H
... ↔ c ≤ d : sub_nonpos_iff_le c d
theorem lt_iff_lt_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a < b ↔ c < d :=
calc
a < b ↔ a - b < 0 : iff.symm (sub_neg_iff_lt a b)
... = (c - d < 0) : by rewrite H
... ↔ c < d : sub_neg_iff_lt c d
theorem sub_le_sub_left {a b : A} (H : a ≤ b) (c : A) : c - b ≤ c - a :=
add_le_add_left (neg_le_neg H) c
theorem sub_le_sub_right {a b : A} (H : a ≤ b) (c : A) : a - c ≤ b - c := add_le_add_right H (-c)
theorem sub_le_sub {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a - d ≤ b - c :=
add_le_add Hab (neg_le_neg Hcd)
theorem sub_lt_sub_left {a b : A} (H : a < b) (c : A) : c - b < c - a :=
add_lt_add_left (neg_lt_neg H) c
theorem sub_lt_sub_right {a b : A} (H : a < b) (c : A) : a - c < b - c := add_lt_add_right H (-c)
theorem sub_lt_sub {a b c d : A} (Hab : a < b) (Hcd : c < d) : a - d < b - c :=
add_lt_add Hab (neg_lt_neg Hcd)
theorem sub_lt_sub_of_le_of_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a - d < b - c :=
add_lt_add_of_le_of_lt Hab (neg_lt_neg Hcd)
theorem sub_lt_sub_of_lt_of_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a - d < b - c :=
add_lt_add_of_lt_of_le Hab (neg_le_neg Hcd)
theorem sub_le_self (a : A) {b : A} (H : b ≥ 0) : a - b ≤ a :=
calc
a - b = a + -b : rfl
... ≤ a + 0 : add_le_add_left (neg_nonpos_of_nonneg H)
... = a : by rewrite add_zero
theorem sub_lt_self (a : A) {b : A} (H : b > 0) : a - b < a :=
calc
a - b = a + -b : rfl
... < a + 0 : add_lt_add_left (neg_neg_of_pos H)
... = a : by rewrite add_zero
theorem add_le_add_three {a b c d e f : A} (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) :
a + b + c ≤ d + e + f :=
begin
apply le.trans,
apply add_le_add,
apply add_le_add,
repeat assumption,
apply le.refl
end
theorem sub_le_of_nonneg {b : A} (H : b ≥ 0) : a - b ≤ a :=
add_le_of_le_of_nonpos (le.refl a) (neg_nonpos_of_nonneg H)
theorem sub_lt_of_pos {b : A} (H : b > 0) : a - b < a :=
add_lt_of_le_of_neg (le.refl a) (neg_neg_of_pos H)
theorem neg_add_neg_le_neg_of_pos {a : A} (H : a > 0) : -a + -a ≤ -a :=
!neg_add ▸ neg_le_neg (le_add_of_nonneg_left (le_of_lt H))
end
/- linear ordered group with decidable order -/
structure decidable_linear_ordered_mul_ab_group [class] (A : Type)
extends ab_group A, decidable_linear_order A :=
(mul_le_mul_left : Π a b, le a b → Π c, le (mul c a) (mul c b))
(mul_lt_mul_left : Π a b, lt a b → Π c, lt (mul c a) (mul c b))
definition decidable_linear_ordered_ab_group [class] : Type → Type :=
decidable_linear_ordered_mul_ab_group
definition add_ab_group_of_decidable_linear_ordered_ab_group [reducible] [trans_instance] (A : Type)
[H : decidable_linear_ordered_ab_group A] : add_ab_group A :=
@decidable_linear_ordered_mul_ab_group.to_ab_group A H
definition decidable_linear_order_of_decidable_linear_ordered_ab_group [reducible]
[trans_instance] (A : Type) [H : decidable_linear_ordered_ab_group A] :
decidable_linear_order A :=
@decidable_linear_ordered_mul_ab_group.to_decidable_linear_order A H
definition decidable_linear_ordered_mul_ab_group.to_ordered_mul_ab_group [reducible]
[trans_instance] (A : Type) [s : decidable_linear_ordered_mul_ab_group A] :
ordered_mul_ab_group A :=
⦃ ordered_mul_ab_group, s,
le_of_lt := @le_of_lt A _,
lt_of_le_of_lt := @lt_of_le_of_lt A _,
lt_of_lt_of_le := @lt_of_lt_of_le A _ ⦄
definition decidable_linear_ordered_ab_group.to_ordered_ab_group [reducible] [trans_instance]
(A : Type) [s : decidable_linear_ordered_ab_group A] : ordered_ab_group A :=
@decidable_linear_ordered_mul_ab_group.to_ordered_mul_ab_group A s
section
variables [s : decidable_linear_ordered_ab_group A]
variables {a b c d e : A}
include s
/- these can be generalized to a lattice ordered group -/
theorem min_add_add_left : min (a + b) (a + c) = a + min b c :=
inverse (eq_min
(show a + min b c ≤ a + b, from add_le_add_left !min_le_left _)
(show a + min b c ≤ a + c, from add_le_add_left !min_le_right _)
(take d,
assume H₁ : d ≤ a + b,
assume H₂ : d ≤ a + c,
have H : d - a ≤ min b c,
from le_min (iff.mp !le_add_iff_sub_left_le H₁) (iff.mp !le_add_iff_sub_left_le H₂),
show d ≤ a + min b c, from iff.mpr !le_add_iff_sub_left_le H))
theorem min_add_add_right : min (a + c) (b + c) = min a b + c :=
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply min_add_add_left
theorem max_add_add_left : max (a + b) (a + c) = a + max b c :=
inverse (eq_max
(add_le_add_left !le_max_left _)
(add_le_add_left !le_max_right _)
(λ d H₁ H₂,
have H : max b c ≤ d - a,
from max_le (iff.mp !add_le_iff_le_sub_left H₁) (iff.mp !add_le_iff_le_sub_left H₂),
show a + max b c ≤ d, from iff.mpr !add_le_iff_le_sub_left H))
theorem max_add_add_right : max (a + c) (b + c) = max a b + c :=
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply max_add_add_left
theorem max_neg_neg : max (-a) (-b) = - min a b :=
inverse (eq_max
(show -a ≤ -(min a b), from neg_le_neg !min_le_left)
(show -b ≤ -(min a b), from neg_le_neg !min_le_right)
(take d,
assume H₁ : -a ≤ d,
assume H₂ : -b ≤ d,
have H : -d ≤ min a b,
from le_min (!iff.mp !neg_le_iff_neg_le H₁) (!iff.mp !neg_le_iff_neg_le H₂),
show -(min a b) ≤ d, from !iff.mp !neg_le_iff_neg_le H))
theorem min_eq_neg_max_neg_neg : min a b = - max (-a) (-b) :=
by rewrite [max_neg_neg, neg_neg]
theorem min_neg_neg : min (-a) (-b) = - max a b :=
by rewrite [min_eq_neg_max_neg_neg, *neg_neg]
theorem max_eq_neg_min_neg_neg : max a b = - min (-a) (-b) :=
by rewrite [min_neg_neg, neg_neg]
/- absolute value -/
variables {a b c}
definition abs (a : A) : A := max a (-a)
theorem abs_of_nonneg (H : a ≥ 0) : abs a = a :=
have H' : -a ≤ a, from le.trans (neg_nonpos_of_nonneg H) H,
max_eq_left H'
theorem abs_of_pos (H : a > 0) : abs a = a :=
abs_of_nonneg (le_of_lt H)
theorem abs_of_nonpos (H : a ≤ 0) : abs a = -a :=
have H' : a ≤ -a, from le.trans H (neg_nonneg_of_nonpos H),
max_eq_right H'
theorem abs_of_neg (H : a < 0) : abs a = -a := abs_of_nonpos (le_of_lt H)
theorem abs_zero : abs 0 = (0:A) := abs_of_nonneg (le.refl _)
theorem abs_neg (a : A) : abs (-a) = abs a :=
by rewrite [↑abs, max.comm, neg_neg]
theorem abs_pos_of_pos (H : a > 0) : abs a > 0 :=
by rewrite (abs_of_pos H); exact H
theorem abs_pos_of_neg (H : a < 0) : abs a > 0 :=
!abs_neg ▸ abs_pos_of_pos (neg_pos_of_neg H)
theorem abs_sub (a b : A) : abs (a - b) = abs (b - a) :=
by rewrite [-neg_sub, abs_neg]
theorem ne_zero_of_abs_ne_zero {a : A} (H : abs a ≠ 0) : a ≠ 0 :=
assume Ha, H (Ha⁻¹ ▸ abs_zero)
/- these assume a linear order -/
theorem eq_zero_of_neg_eq (H : -a = a) : a = 0 :=
lt.by_cases
(assume H1 : a < 0,
have H2: a > 0, from H ▸ neg_pos_of_neg H1,
absurd H1 (lt.asymm H2))
(assume H1 : a = 0, H1)
(assume H1 : a > 0,
have H2: a < 0, from H ▸ neg_neg_of_pos H1,
absurd H1 (lt.asymm H2))
theorem abs_nonneg (a : A) : abs a ≥ 0 :=
sum.elim (le.total 0 a)
(assume H : 0 ≤ a, by rewrite (abs_of_nonneg H); exact H)
(assume H : a ≤ 0,
calc
0 ≤ -a : neg_nonneg_of_nonpos H
... = abs a : abs_of_nonpos H)
theorem abs_abs (a : A) : abs (abs a) = abs a := abs_of_nonneg !abs_nonneg
theorem le_abs_self (a : A) : a ≤ abs a :=
sum.elim (le.total 0 a)
(assume H : 0 ≤ a, abs_of_nonneg H ▸ !le.refl)
(assume H : a ≤ 0, le.trans H !abs_nonneg)
theorem neg_le_abs_self (a : A) : -a ≤ abs a :=
!abs_neg ▸ !le_abs_self
theorem eq_zero_of_abs_eq_zero (H : abs a = 0) : a = 0 :=
have H1 : a ≤ 0, from H ▸ le_abs_self a,
have H2 : -a ≤ 0, from H ▸ abs_neg a ▸ le_abs_self (-a),
le.antisymm H1 (nonneg_of_neg_nonpos H2)
theorem abs_eq_zero_iff_eq_zero (a : A) : abs a = 0 ↔ a = 0 :=
iff.intro eq_zero_of_abs_eq_zero (assume H, ap abs H ⬝ !abs_zero)
theorem eq_of_abs_sub_eq_zero {a b : A} (H : abs (a - b) = 0) : a = b :=
have a - b = 0, from eq_zero_of_abs_eq_zero H,
show a = b, from eq_of_sub_eq_zero this
theorem abs_pos_of_ne_zero (H : a ≠ 0) : abs a > 0 :=
sum.elim (lt_sum_gt_of_ne H) abs_pos_of_neg abs_pos_of_pos
theorem abs.by_cases {P : A → Type} {a : A} (H1 : P a) (H2 : P (-a)) : P (abs a) :=
sum.elim (le.total 0 a)
(assume H : 0 ≤ a, (abs_of_nonneg H)⁻¹ ▸ H1)
(assume H : a ≤ 0, (abs_of_nonpos H)⁻¹ ▸ H2)
theorem abs_le_of_le_of_neg_le (H1 : a ≤ b) (H2 : -a ≤ b) : abs a ≤ b :=
abs.by_cases H1 H2
theorem abs_lt_of_lt_of_neg_lt (H1 : a < b) (H2 : -a < b) : abs a < b :=
abs.by_cases H1 H2
-- the triangle inequality
section
private lemma aux1 {a b : A} (H1 : a + b ≥ 0) (H2 : a ≥ 0) : abs (a + b) ≤ abs a + abs b :=
decidable.by_cases
(assume H3 : b ≥ 0,
calc
abs (a + b) ≤ abs (a + b) : le.refl
... = a + b : by rewrite (abs_of_nonneg H1)
... = abs a + b : by rewrite (abs_of_nonneg H2)
... = abs a + abs b : by rewrite (abs_of_nonneg H3))
(assume H3 : ¬ b ≥ 0,
have H4 : b ≤ 0, from le_of_lt (lt_of_not_ge H3),
calc
abs (a + b) = a + b : by rewrite (abs_of_nonneg H1)
... = abs a + b : by rewrite (abs_of_nonneg H2)
... ≤ abs a + 0 : add_le_add_left H4
... ≤ abs a + -b : add_le_add_left (neg_nonneg_of_nonpos H4)
... = abs a + abs b : by rewrite (abs_of_nonpos H4))
private lemma aux2 {a b : A} (H1 : a + b ≥ 0) : abs (a + b) ≤ abs a + abs b :=
sum.elim (le.total b 0)
(assume H2 : b ≤ 0,
have H3 : ¬ a < 0, from
assume H4 : a < 0,
have H5 : a + b < 0, from !add_zero ▸ add_lt_add_of_lt_of_le H4 H2,
not_lt_of_ge H1 H5,
aux1 H1 (le_of_not_gt H3))
(assume H2 : 0 ≤ b,
begin
have H3 : abs (b + a) ≤ abs b + abs a,
begin
rewrite add.comm at H1,
exact aux1 H1 H2
end,
rewrite [add.comm, {abs a + _}add.comm],
exact H3
end)
theorem abs_add_le_abs_add_abs (a b : A) : abs (a + b) ≤ abs a + abs b :=
sum.elim (le.total 0 (a + b))
(assume H2 : 0 ≤ a + b, aux2 H2)
(assume H2 : a + b ≤ 0,
have H3 : -a + -b = -(a + b), by rewrite neg_add,
have H4 : -(a + b) ≥ 0, from iff.mpr (neg_nonneg_iff_nonpos (a+b)) H2,
have H5 : -a + -b ≥ 0, begin rewrite -H3 at H4, exact H4 end,
calc
abs (a + b) = abs (-a + -b) : by rewrite [-abs_neg, neg_add]
... ≤ abs (-a) + abs (-b) : aux2 H5
... = abs a + abs b : by rewrite *abs_neg)
theorem abs_sub_abs_le_abs_sub (a b : A) : abs a - abs b ≤ abs (a - b) :=
have H1 : abs a - abs b + abs b ≤ abs (a - b) + abs b, from
calc
abs a - abs b + abs b = abs a : by rewrite sub_add_cancel
... = abs (a - b + b) : by rewrite sub_add_cancel
... ≤ abs (a - b) + abs b : abs_add_le_abs_add_abs,
le_of_add_le_add_right H1
theorem abs_sub_le (a b c : A) : abs (a - c) ≤ abs (a - b) + abs (b - c) :=
calc
abs (a - c) = abs (a - b + (b - c)) : by rewrite [*sub_eq_add_neg, add.assoc, neg_add_cancel_left]
... ≤ abs (a - b) + abs (b - c) : abs_add_le_abs_add_abs
theorem abs_add_three (a b c : A) : abs (a + b + c) ≤ abs a + abs b + abs c :=
begin
apply le.trans,
apply abs_add_le_abs_add_abs,
apply le.trans,
apply add_le_add_right,
apply abs_add_le_abs_add_abs,
apply le.refl
end
theorem dist_bdd_within_interval {a b lb ub : A} (H : lb < ub) (Hal : lb ≤ a) (Hau : a ≤ ub)
(Hbl : lb ≤ b) (Hbu : b ≤ ub) : abs (a - b) ≤ ub - lb :=
begin
cases (decidable.em (b ≤ a)) with [Hba, Hba],
rewrite (abs_of_nonneg (iff.mpr !sub_nonneg_iff_le Hba)),
apply sub_le_sub,
apply Hau,
apply Hbl,
rewrite [abs_of_neg (iff.mpr !sub_neg_iff_lt (lt_of_not_ge Hba)), neg_sub],
apply sub_le_sub,
apply Hbu,
apply Hal
end
end
end
end algebra