61901cff81
also add more definitions in types.pi, types.path, algebra.precategory the (pre)category library still needs cleanup authors of this commit: @avigad, @javra, @fpvandoorn
77 lines
1.9 KiB
Text
77 lines
1.9 KiB
Text
/-
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Module: init.datatypes
|
|
Authors: Leonardo de Moura, Jakob von Raumer
|
|
|
|
Basic datatypes
|
|
-/
|
|
prelude
|
|
notation [parsing-only] `Type'` := Type.{_+1}
|
|
notation [parsing-only] `Type₊` := Type.{_+1}
|
|
notation `Type₀` := Type.{0}
|
|
notation `Type₁` := Type.{1}
|
|
notation `Type₂` := Type.{2}
|
|
notation `Type₃` := Type.{3}
|
|
|
|
inductive unit.{l} : Type.{l} :=
|
|
star : unit
|
|
|
|
namespace unit
|
|
|
|
notation `⋆` := star
|
|
|
|
end unit
|
|
|
|
inductive empty.{l} : Type.{l}
|
|
|
|
inductive eq.{l} {A : Type.{l}} (a : A) : A → Type.{l} :=
|
|
refl : eq a a
|
|
|
|
structure lift.{l₁ l₂} (A : Type.{l₁}) : Type.{max l₁ l₂} :=
|
|
up :: (down : A)
|
|
|
|
structure prod (A B : Type) :=
|
|
mk :: (pr1 : A) (pr2 : B)
|
|
|
|
inductive sum (A B : Type) : Type :=
|
|
inl {} : A → sum A B,
|
|
inr {} : B → sum A B
|
|
|
|
definition sum.intro_left [reducible] {A : Type} (B : Type) (a : A) : sum A B :=
|
|
sum.inl a
|
|
|
|
definition sum.intro_right [reducible] (A : Type) {B : Type} (b : B) : sum A B :=
|
|
sum.inr b
|
|
|
|
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
|
|
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
|
|
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
|
|
inductive pos_num : Type :=
|
|
one : pos_num,
|
|
bit1 : pos_num → pos_num,
|
|
bit0 : pos_num → pos_num
|
|
|
|
inductive num : Type :=
|
|
zero : num,
|
|
pos : pos_num → num
|
|
|
|
inductive bool : Type :=
|
|
ff : bool,
|
|
tt : bool
|
|
|
|
inductive char : Type :=
|
|
mk : bool → bool → bool → bool → bool → bool → bool → bool → char
|
|
|
|
inductive string : Type :=
|
|
empty : string,
|
|
str : char → string → string
|
|
|
|
inductive nat :=
|
|
zero : nat,
|
|
succ : nat → nat
|
|
|
|
inductive option (A : Type) : Type :=
|
|
none {} : option A,
|
|
some : A → option A
|