lean2/library/logic/connectives.lean

152 lines
4.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Haitao Zhang
The propositional connectives. See also init.datatypes and init.logic.
-/
open eq.ops
variables {a b c d : Prop}
/- implies -/
definition imp (a b : Prop) : Prop := a → b
theorem imp.id (H : a) : a := H
theorem imp.intro (H : a) (H₂ : b) : a := H
theorem imp.mp (H : a) (H₂ : a → b) : b :=
H₂ H
theorem imp.syl (H : a → b) (H₂ : c → a) (Hc : c) : b :=
H (H₂ Hc)
theorem imp.left (H : a → b) (H₂ : b → c) (Ha : a) : c :=
H₂ (H Ha)
theorem imp_true (a : Prop) : (a → true) ↔ true :=
iff_true_intro (imp.intro trivial)
theorem true_imp (a : Prop) : (true → a) ↔ a :=
iff.intro (assume H, H trivial) imp.intro
theorem imp_false (a : Prop) : (a → false) ↔ ¬ a := iff.rfl
theorem false_imp (a : Prop) : (false → a) ↔ true :=
iff_true_intro false.elim
/- not -/
theorem not.elim {A : Type} (H1 : ¬a) (H2 : a) : A := absurd H2 H1
theorem not.mto {a b : Prop} : (a → b) → ¬b → ¬a := imp.left
theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a := not.mto
theorem not_not_of_not_implies : ¬(a → b) → ¬¬a :=
not.mto not.elim
theorem not_of_not_implies : ¬(a → b) → ¬b :=
not.mto imp.intro
theorem not_not_em : ¬¬(a ¬a) :=
assume not_em : ¬(a ¬a),
not_em (or.inr (not.mto or.inl not_em))
theorem not_iff_not (H : a ↔ b) : ¬a ↔ ¬b :=
iff.intro (not.mto (iff.mpr H)) (not.mto (iff.mp H))
/- and -/
definition not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) :=
not.mto and.left
definition not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) :=
not.mto and.right
theorem and.imp_left (H : a → b) : a ∧ c → b ∧ c :=
and.imp H imp.id
theorem and.imp_right (H : a → b) : c ∧ a → c ∧ b :=
and.imp imp.id H
theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
and.imp H₂ H₃ H₁
theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
and.imp_left H H₁
theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
and.imp_right H H₁
theorem and_imp_iff (a b c : Prop) : (a ∧ b → c) ↔ (a → b → c) :=
iff.intro (λH a b, H (and.intro a b)) and.rec
theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) :=
propext !and_imp_iff
/- or -/
definition not_or : ¬a → ¬b → ¬(a b) := or.rec
theorem or_of_or_of_imp_of_imp (H₁ : a b) (H₂ : a → c) (H₃ : b → d) : c d :=
or.imp H₂ H₃ H₁
theorem or_of_or_of_imp_left (H₁ : a c) (H : a → b) : b c :=
or.imp_left H H₁
theorem or_of_or_of_imp_right (H₁ : c a) (H : a → b) : c b :=
or.imp_right H H₁
theorem or.elim3 (H : a b c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
or.elim H Ha (assume H₂, or.elim H₂ Hb Hc)
theorem or_resolve_right (H₁ : a b) (H₂ : ¬a) : b :=
or.elim H₁ (not.elim H₂) imp.id
theorem or_resolve_left (H₁ : a b) : ¬b → a :=
or_resolve_right (or.swap H₁)
theorem or.imp_distrib : ((a b) → c) ↔ ((a → c) ∧ (b → c)) :=
iff.intro
(λH, and.intro (imp.syl H or.inl) (imp.syl H or.inr))
(and.rec or.rec)
theorem or_iff_right_of_imp {a b : Prop} (Ha : a → b) : (a b) ↔ b :=
iff.intro (or.rec Ha imp.id) or.inr
theorem or_iff_left_of_imp {a b : Prop} (Hb : b → a) : (a b) ↔ a :=
iff.intro (or.rec imp.id Hb) or.inl
theorem or_iff_or (H1 : a ↔ c) (H2 : b ↔ d) : (a b) ↔ (c d) :=
iff.intro (or.imp (iff.mp H1) (iff.mp H2)) (or.imp (iff.mpr H1) (iff.mpr H2))
/- distributivity -/
theorem and.left_distrib (a b c : Prop) : a ∧ (b c) ↔ (a ∧ b) (a ∧ c) :=
iff.intro
(and.rec (λH, or.imp (and.intro H) (and.intro H)))
(or.rec (and.imp_right or.inl) (and.imp_right or.inr))
theorem and.right_distrib (a b c : Prop) : (a b) ∧ c ↔ (a ∧ c) (b ∧ c) :=
iff.trans (iff.trans !and.comm !and.left_distrib) (or_iff_or !and.comm !and.comm)
theorem or.left_distrib (a b c : Prop) : a (b ∧ c) ↔ (a b) ∧ (a c) :=
iff.intro
(or.rec (λH, and.intro (or.inl H) (or.inl H)) (and.imp or.inr or.inr))
(and.rec (or.rec (imp.syl imp.intro or.inl) (imp.syl or.imp_right and.intro)))
theorem or.right_distrib (a b c : Prop) : (a ∧ b) c ↔ (a c) ∧ (b c) :=
iff.trans (iff.trans !or.comm !or.left_distrib) (and_congr !or.comm !or.comm)
/- iff -/
definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) := rfl
theorem forall_imp_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∀a, P a) (a : A) : Q a :=
(H a) (p a)
theorem imp_iff {P : Prop} (Q : Prop) (p : P) : (P → Q) ↔ Q :=
iff.intro (λf, f p) imp.intro