lean2/library/logic/examples/nuprl_examples.lean

215 lines
6.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Theorems/Exercises from "Logical Investigations, with the Nuprl Proof Assistant"
-- by Robert L. Constable and Anne Trostle
-- http://www.nuprl.org/MathLibrary/LogicalInvestigations/
import logic
-- 2. The Minimal Implicational Calculus
theorem thm1 {A B : Prop} : A → B → A :=
assume Ha Hb, Ha
theorem thm2 {A B C : Prop} : (A → B) → (A → B → C) → (A → C) :=
assume Hab Habc Ha,
Habc Ha (Hab Ha)
theorem thm3 {A B C : Prop} : (A → B) → (B → C) → (A → C) :=
assume Hab Hbc Ha,
Hbc (Hab Ha)
-- 3. False Propositions and Negation
theorem thm4 {P Q : Prop} : ¬P → P → Q :=
assume Hnp Hp,
absurd Hp Hnp
theorem thm5 {P : Prop} : P → ¬¬P :=
assume (Hp : P) (HnP : ¬P),
absurd Hp HnP
theorem thm6 {P Q : Prop} : (P → Q) → (¬Q → ¬P) :=
assume (Hpq : P → Q) (Hnq : ¬Q) (Hp : P),
have Hq : Q, from Hpq Hp,
show false, from absurd Hq Hnq
theorem thm7 {P Q : Prop} : (P → ¬P) → (P → Q) :=
assume Hpnp Hp,
absurd Hp (Hpnp Hp)
theorem thm8 {P Q : Prop} : ¬(P → Q) → (P → ¬Q) :=
assume (Hn : ¬(P → Q)) (Hp : P) (Hq : Q),
-- Rermak we don't even need the hypothesis Hp
have H : P → Q, from assume H', Hq,
absurd H Hn
-- 4. Conjunction and Disjunction
theorem thm9 {P : Prop} : (P ¬P) → (¬¬P → P) :=
assume (em : P ¬P) (Hnn : ¬¬P),
or.elim em
(assume Hp, Hp)
(assume Hn, absurd Hn Hnn)
theorem thm10 {P : Prop} : ¬¬(P ¬P) :=
assume Hnem : ¬(P ¬P),
have Hnp : ¬P, from
assume Hp : P,
have Hem : P ¬P, from or.inl Hp,
absurd Hem Hnem,
have Hem : P ¬P, from or.inr Hnp,
absurd Hem Hnem
theorem thm11 {P Q : Prop} : ¬P ¬Q → ¬(P ∧ Q) :=
assume (H : ¬P ¬Q) (Hn : P ∧ Q),
or.elim H
(assume Hnp : ¬P, absurd (and.elim_left Hn) Hnp)
(assume Hnq : ¬Q, absurd (and.elim_right Hn) Hnq)
theorem thm12 {P Q : Prop} : ¬(P Q) → ¬P ∧ ¬Q :=
assume H : ¬(P Q),
have Hnp : ¬P, from assume Hp : P, absurd (or.inl Hp) H,
have Hnq : ¬Q, from assume Hq : Q, absurd (or.inr Hq) H,
and.intro Hnp Hnq
theorem thm13 {P Q : Prop} : ¬P ∧ ¬Q → ¬(P Q) :=
assume (H : ¬P ∧ ¬Q) (Hn : P Q),
or.elim Hn
(assume Hp : P, absurd Hp (and.elim_left H))
(assume Hq : Q, absurd Hq (and.elim_right H))
theorem thm14 {P Q : Prop} : ¬P Q → P → Q :=
assume (Hor : ¬P Q) (Hp : P),
or.elim Hor
(assume Hnp : ¬P, absurd Hp Hnp)
(assume Hq : Q, Hq)
theorem thm15 {P Q : Prop} : (P → Q) → ¬¬(¬P Q) :=
assume (Hpq : P → Q) (Hn : ¬(¬P Q)),
have H1 : ¬¬P ∧ ¬Q, from thm12 Hn,
have Hnp : ¬P, from mt Hpq (and.elim_right H1),
absurd Hnp (and.elim_left H1)
theorem thm16 {P Q : Prop} : (P → Q) ∧ ((P ¬P) (Q ¬Q)) → ¬P Q :=
assume H : (P → Q) ∧ ((P ¬P) (Q ¬Q)),
have Hpq : P → Q, from and.elim_left H,
or.elim (and.elim_right H)
(assume Hem1 : P ¬P, or.elim Hem1
(assume Hp : P, or.inr (Hpq Hp))
(assume Hnp : ¬P, or.inl Hnp))
(assume Hem2 : Q ¬Q, or.elim Hem2
(assume Hq : Q, or.inr Hq)
(assume Hnq : ¬Q, or.inl (mt Hpq Hnq)))
-- 5. First-Order Logic: All and Exists
section
variables {T : Type} {C : Prop} {P : T → Prop}
theorem thm17a : (C → ∀x, P x) → (∀x, C → P x) :=
assume H : C → ∀x, P x,
take x : T, assume Hc : C,
H Hc x
theorem thm17b : (∀x, C → P x) → (C → ∀x, P x) :=
assume (H : ∀x, C → P x) (Hc : C),
take x : T,
H x Hc
theorem thm18a : ((∃x, P x) → C) → (∀x, P x → C) :=
assume H : (∃x, P x) → C,
take x, assume Hp : P x,
have Hex : ∃x, P x, from exists_intro x Hp,
H Hex
theorem thm18b : (∀x, P x → C) → (∃x, P x) → C :=
assume (H1 : ∀x, P x → C) (H2 : ∃x, P x),
obtain (w : T) (Hw : P w), from H2,
H1 w Hw
theorem thm19a : (C ¬C) → (∃x : T, true) → (C → (∃x, P x)) → (∃x, C → P x) :=
assume (Hem : C ¬C) (Hin : ∃x : T, true) (H1 : C → ∃x, P x),
or.elim Hem
(assume Hc : C,
obtain (w : T) (Hw : P w), from H1 Hc,
have Hr : C → P w, from assume Hc, Hw,
exists_intro w Hr)
(assume Hnc : ¬C,
obtain (w : T) (Hw : true), from Hin,
have Hr : C → P w, from assume Hc, absurd Hc Hnc,
exists_intro w Hr)
theorem thm19b : (∃x, C → P x) → C → (∃x, P x) :=
assume (H : ∃x, C → P x) (Hc : C),
obtain (w : T) (Hw : C → P w), from H,
exists_intro w (Hw Hc)
theorem thm20a : (C ¬C) → (∃x : T, true) → ((¬∀x, P x) → ∃x, ¬P x) → ((∀x, P x) → C) → (∃x, P x → C) :=
assume Hem Hin Hnf H,
or.elim Hem
(assume Hc : C,
obtain (w : T) (Hw : true), from Hin,
exists_intro w (assume H : P w, Hc))
(assume Hnc : ¬C,
have H1 : ¬(∀x, P x), from mt H Hnc,
have H2 : ∃x, ¬P x, from Hnf H1,
obtain (w : T) (Hw : ¬P w), from H2,
exists_intro w (assume H : P w, absurd H Hw))
theorem thm20b : (∃x, P x → C) → (∀ x, P x) → C :=
assume Hex Hall,
obtain (w : T) (Hw : P w → C), from Hex,
Hw (Hall w)
theorem thm21a : (∃x : T, true) → ((∃x, P x) C) → (∃x, P x C) :=
assume Hin H,
or.elim H
(assume Hex : ∃x, P x,
obtain (w : T) (Hw : P w), from Hex,
exists_intro w (or.inl Hw))
(assume Hc : C,
obtain (w : T) (Hw : true), from Hin,
exists_intro w (or.inr Hc))
theorem thm21b : (∃x, P x C) → ((∃x, P x) C) :=
assume H,
obtain (w : T) (Hw : P w C), from H,
or.elim Hw
(assume H : P w, or.inl (exists_intro w H))
(assume Hc : C, or.inr Hc)
theorem thm22a : (∀x, P x) C → ∀x, P x C :=
assume H, take x,
or.elim H
(assume Hl, or.inl (Hl x))
(assume Hr, or.inr Hr)
theorem thm22b : (C ¬C) → (∀x, P x C) → ((∀x, P x) C) :=
assume Hem H1,
or.elim Hem
(assume Hc : C, or.inr Hc)
(assume Hnc : ¬C,
have Hx : ∀x, P x, from
take x,
have H1 : P x C, from H1 x,
or_resolve_left H1 Hnc,
or.inl Hx)
theorem thm23a : (∃x, P x) ∧ C → (∃x, P x ∧ C) :=
assume H,
have Hex : ∃x, P x, from and.elim_left H,
have Hc : C, from and.elim_right H,
obtain (w : T) (Hw : P w), from Hex,
exists_intro w (and.intro Hw Hc)
theorem thm23b : (∃x, P x ∧ C) → (∃x, P x) ∧ C :=
assume H,
obtain (w : T) (Hw : P w ∧ C), from H,
have Hex : ∃x, P x, from exists_intro w (and.elim_left Hw),
and.intro Hex (and.elim_right Hw)
theorem thm24a : (∀x, P x) ∧ C → (∀x, P x ∧ C) :=
assume H, take x,
and.intro (and.elim_left H x) (and.elim_right H)
theorem thm24b : (∃x : T, true) → (∀x, P x ∧ C) → (∀x, P x) ∧ C :=
assume Hin H,
obtain (w : T) (Hw : true), from Hin,
have Hc : C, from and.elim_right (H w),
have Hx : ∀x, P x, from take x, and.elim_left (H x),
and.intro Hx Hc
end -- of section